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Abstract

Dwork’s Theorem concerns the generating function for the number of points on affine algebraic varieties

defined over finite fields. If Fq is a finite field for some prime power q and Fqs are its finite extensions

then the generating function encodes information about the number of points Ns of the variety in each

extension. The theorem states that the generating function is necessarily rational; this allows us to

completely determine Nt for every positive integer t by the Ni for some 1 ≤ i ≤ s. Bernard Dwork’s

celebrated proof of this theorem, which is originally a conjecture of André Weil, employs p-adic functional

analysis. In this dissertation, we aim to provide a rigorous exposition of the proof of the theorem. Along

the way, we shall examine the theory of p-adic numbers and understand their deep contributions to this

program. Towards the end of this dissertation, we shall discuss the Weil conjectures in generality and

observe how Dwork’s Theorem fits into the general framework as originally proposed by Weil.
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Chapter 1

Introduction

1.1 Historical Background

For millennia, mathematicians have been fascinated by polynomials. Their beauty is two-fold, encom-

passing both the simplicity of their expression and their deep connections with a multitude of mathem-

atical fields. Their theory is certainly enormous in scope - indeed, many people dedicate their entire

lives to the study of these objects, contributing rich results that are of fundamental importance to the

mathematics we do everyday. The theory of polynomials is where we begin our discussion of Dwork’s

Theorem.

Carl Friedrich Gauss was one such mathematician who studied polynomials. In his famous Disquisi-

tiones Arithmeticae, Gauss presented a method for finding the number of solutions for congruences of

the form ax3 − by3 ≡ 1 (mod p) for some prime p of the form p = 3n + 1 and integers a and b. He

employed so-called Gauss sums which, in some sense, are a finite field analogue of the Gamma function.

In subsequent publications, Gauss applied his method to tackle similarly formed problems. Clearly,

determining the number of solutions to ax3 − by3 = 1 over the rational numbers would seem utterly

non-trivial at first glance. It turns out that by examining such a polynomial modulo a prime p, we

might be able to determine the behaviour of solutions in the rational numbers. An example of this is the

Hasse-Minkowski Theorem which implies that a quadratic form has a solution in the rational numbers if

and only if it has a solution in the real numbers and the p-adic numbers for each prime p. In some sense,

the principle allows us to patch together local solutions to form a global solution. This local-global trope

is the first step to motivating the study of Dwork’s Theorem.

Our second motivating factor for the study of Dwork’s Theorem is the infamous Riemann hypo-

thesis. Riemann’s work on the zeroes of his zeta-function provided a conjecture which has tantalised

mathematicians for over a century. Emile Artin married the Riemann hypothesis with the aforemen-

tioned ideas by constructing a zeta-function for curves over finite fields. He exhibited that an analogue

of the Riemann hypothesis holds for certain curves and conjectured that the result holds true for all

curves. Weil proved that Artin’s conjecture indeed holds for all curves and further conjectured that the

zeta-function of a general, smooth, projective variety has certain properties, including the analogue of

the Riemann hypothesis. What is now known as Dwork’s Theorem was the first of these conjectures to

have been proven.
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1.2. Understanding the statement of Dwork’s Theorem 2

1.2 Understanding the statement of Dwork’s Theorem

We now turn our sights towards the statement of Dwork’s Theorem. To this end, we first recall a few

key results from the theory of finite fields.

Let p be a prime number, Fp the finite field of order p and denote K = Fp, the algebraic closure of

Fp. Then

FF1 For each positive integer s, there exists a unique field of order ps, which we denote Fps , satisfying

[Fps : Fp] = s. Conversely, any finite field necessarily has prime power order.

FF2 Fps is the set of all elements of K satisfying xp
s − x = 0. Conversely, given any positive integer s,

the roots of the polynomial xp
s − x = 0 form a field of ps elements.

FF3 F×ps is a cyclic group of order ps − 1.

For a rigorous treatment of the above facts, the reader is invited to check any standard text on Galois

Theory such as [Ste89]. We are now ready to introduce the main notions involved in the statement of

Dwork’s Theorem.

Definition 1.2.1. Let K be a field. We define the n-dimensional affine space over K to be

AnK = { (x1, . . . , xn) | xi ∈ K }

Definition 1.2.2. Let K be a field and f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] a polynomial. We define the

affine hypersurface defined by f in AnK to be

Hf = { (x1, . . . , xn) ∈ AnK | f(x1, . . . , xn) = 0 }

We define the dimension of Hf to be the number n − 1. We say that Hf is an affine curve if the

dimension of Hf is 1.

Definition 1.2.3. Let Hf be an affine hypersurface defined over a field K. If L/K is a field extension

then we define the L-points of Hf to be

Hf (L) = { (x1, . . . , xn) ∈ AnL | f(x1, . . . , xn) = 0 }

We now specialise to the case where K is a finite field. Fix a prime p and let q = ps for some positive

integer s. Let f ∈ Fq[X1, . . . , Xn] define an n − 1 dimensional affine hypersurface over Fq, say Hf . We

are interested in determining the number of K-points of Hf for some finite extension K/Fq. To this end,

let

Ns = |Hf (Fqs)|

define an integer sequence, indexed by s. A natural question to ask about an integer sequence is whether

or not it exhibits recursive behaviour. That is to say, is it possible to determine Ns for all s ≥ t given
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that we know Ni for all 1 ≤ i < t? The theory of generating functions is often used to determine the

solution to such a question which motivates the following definition:

Definition 1.2.4. Let Hf be an affine hypersurface defined over a finite field Fq. We define the zeta-

function of Hf to be

Z(Hf/Fq;T ) = exp

( ∞∑
i=1

NsT
s

s

)

The reason for this choice of generating function over the more natural
∑∞

i=1NiT
i will become

apparent later on in this dissertation.

Armed with these notions, we can now understand the statement of Dwork’s Theorem:

Theorem 1.2.5 (Dwork’s Theorem). Let Hf be an affine hypersurface defined over a finite field Fq.

Then the zeta-function of Hf is a rational function.

Dwork’s Theorem implies that the generating function for the integer sequence Ns has a closed form

as the ratio of two polynomials. This allows us to read off each Ns using the following:

Ns =
1

(s− 1)!

[
ds

dT s
logZ(Hf/Fq;T )

]
T=0

In particular, this implies that there exist algebraic numbers α1, . . . , αn and β1, . . . , βm such that

Ns =
n∑
i=1

αsi −
m∑
i=1

βsi

In the terminology of the original problem, we see that there exists a t ∈ N such that for all s ≥ t,

the number of Fqs-points of Hf are completely determined by all Ni for 1 ≤ i < t.

Example 1.2.6. Let Fq be a finite field and H the hypersurface consisting of all points of AnFq . Then

clearly, for any finite extension Fqs/Fq we have Ns = qsn. It follows that

Z(H/Fq;T ) = exp

( ∞∑
s=1

(qnT )s

s

)
= exp(− log(1− qnT )) =

1

1− qnT

By the logarithmic derivative formula, we can easily see that Ns = N s
1 for all s > 1. This verifies the

implications of Dwork’s Theorem for this particular hypersurface.

Example 1.2.7. Let Hf be the hypersurface over Fq defined by the polynomial f(X1, . . . , X4) = X1X4−

X2X3 − 1.

We first consider the case when X3 = 0. In this case, the equation defining Hf reduces to X1X4 = 1.

Since X2 no longer contributes anything to this equation, there are qs choices for it. Now, since Fqs is

a field, every non-zero element has a multiplicative inverse and there are thus qs − 1 choices of pairs of

X1 and X4. It follows that the case where X3 = 0 contributes qs(qs − 1) elements to Hf (Fqs).

Now suppose that X3 6= 0. Then X1 and X4 can be chosen to be an element of Fq. X3 can only

be chosen from F×q . X2 is thus fixed by these choices and, in this case, there are qsqs(qs − 1) elements
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contributed to Hf (Fqs). We therefore have that

Ns = q3s − q2s + q2s − qs = q3s − qs

The zeta-function of Hf is thus given by

Z(Hf/Fq;T ) = exp

( ∞∑
s=1

(q3s − qs)T s

s

)
=

exp(
∑∞

s=1(q
3T )s/s)

exp(
∑∞

s=1(qT )s/s)
=

1− qT
1− q3T

Dwork proved this result by a remarkable application of so-called p-adic functional analysis. In the

next chapter, we shall construct the p-adic numbers and study some interesting properties surrounding

their field extensions which will prove very useful in our discussion of the proof of Dwork’s Theorem.



Chapter 2

The p-adic numbers

2.1 Absolute values and Qp

The p-adic numbers are a collection of countably many distinct extensions of the arithmetic of the rational

numbers. They were first introduced in the late 1890s by Kurt Hensel and have proven extremely useful

in a myriad of number theoretic problems. To motivate our construction, we briefly recall the standard

construction of the real numbers from the rational numbers.

Consider the absolute value function |·| which maps a rational number to its magnitude. We complete

the rational numbers with respect to this absolute value by considering the set S of all Cauchy sequences

with rational elements. If { an } and { bn } are two such Cauchy sequences then we define an equivalence

relation where { an } ∼ { bn } if and only if limi→∞ |ai− bi| → 0. The real numbers are then obtained by

quotienting S out by ∼. It is easy to check that this yields a field after defining the standard operations

on these equivalence classes.

The p-adic numbers are obtained by applying this process to a so-called non-Archimedean absolute

value.

Proposition 2.1.1. Let p be a prime number and x = a/b ∈ Q be non-zero. If x = a/b = pαc/d where

c and d are coprime to p then the function vp : Q→ Z ∪ {∞}1 defined by

vp(x) =

 α if x 6= 0

∞ if x = 0

is a valuation of Q, referred to as the p-adic valuation.

Proof. By the definition of vp, it is clear that vp(x) =∞ if and only if x = 0. Hence it suffices to show

that for all x, y ∈ Q we have vp(xy) = vp(x) + vp(y) and vp(x + y) ≥ min{vp(x), vp(y)} where equality

holds in the latter statement if and only if vp(x) 6= vp(y).

To this end, let x = a/b and y = c/d. Then we may write x = pαm/n and y = pβj/k with p coprime

to the integers m,n, j and k. We then have that vp(xy) = vp(p
α+β(mj)/(nk)) whence vp(xy) = α+ β =

vp(x) + vp(y).

Now, if any of x,y or x + y are zero then the last property follows trivially. Hence we may assume

1here we are extending the ordering and additive group law of Z to Z∪ {∞} with ∞ ≥ x and ∞+ x = x+∞ =∞ for
all x ∈ Z

5
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they are non-zero and so is their sum. Then

vp(x+ y) = vp

(
ad+ bc

bd

)
= vp(ad+ bc)− vp(b)− vp(d)

≥ min{vp(ad), vp(bc)} − vp(b)− vp(d) (2.1)

= min{vp(x), vp(y)}

Note that equality holds in Equation 2.1 if and only if ad 6= bc and thus the proposition is proved.

Definition 2.1.2. Let p be a prime number. Then we define the p-adic absolute value on Q to be

the function | · |p : Q→ R defined by

|x|p =

 p−vp(x) if x 6= 0

0 if x = 0

Each axiom of absolute values can be checked for | · |p from the corresponding axiom for vp. In

fact, | · |p satisfies a much stronger property than the triangle inequality, namely for all x, y ∈ Q, we

have |x + y|p ≤ max{|x|p, |y|p}. This is thanks to the inequality axiom for the valuation vp. Such

an inequality is called the ultrametric inequality and absolute values satisfying this property are

called non-Archimedean. Absolute values that only satisfy the triangle inequality are referred to as

Archimedean - a standard example of this is the magnitude mapping on Q which we will henceforth

denote by | · |∞.

We have seen that, given any prime number p, we can define another absolute value on Q depending

on p. If we complete Q with respect to this absolute value, we obtain the field of p-adic numbers,

henceforth denoted Qp.

Firstly, we extend the absolute value | · |p to Qp. Given any equivalence class α ∈ Qp, we choose

a representative {αi } and we define |α|p = limi→∞ |αi|p. Clearly this definition is independent of the

choice of representative; however, we must show that such a limit necessarily exists. If limi→∞ |αi|p = 0

then the limit is clearly defined. If not then for all ε > 0, there exists an N ∈ N such that for all i > N

we have |αi|p > ε. Since {αi } is Cauchy, we have that for all n > N , |αn−αi|p < ε. On the other hand,

|αn − αi|p ≤ max{|αn|p, |αi|p} > ε. To avoid a contradiction, we must have that |αn|p = |αi|p and thus

the limit is defined.

We now look at the structure of the elements of Qp. In some sense, these elements can be expressed

as power series in p.

Definition 2.1.3. We define the p-adic integers, denoted Zp, as follows:

Zp = {α ∈ Qp | |α|p ≤ 1 }

Lemma 2.1.4. Let x ∈ Q be a rational number such that |x|p ≤ 1. Then for all i ∈ N there exists an

integer α ∈ Z satisfying |α− x|p ≤ p−i and α ∈ { 0, 1, . . . , pi − 1 }.
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Theorem 2.1.5. Let α ∈ Qp be a p-adic number. Then there exists a unique representative Cauchy

sequence of α, say { ai }, such that for all i ∈ N,

1. 0 ≤ ai < pi

2. ai ≡ ai+1 (mod pi)

For a proof of this result, see [Kob84, p.11–12]. Theorem 2.1.5 allows us to write any α ∈ Qp in the

form

α = a−mp
−m + a−m+1p

−m+1 + · · ·+ a0 + a1p+ a2p
2 + . . .

for some m ∈ N and ai ∈ Fp. Such a base p expansion makes the arithmetic of the p-adic numbers very

simple to work with and gives a much more intuitive picture as opposed to the more abstract Cauchy

sequence construction.

Example 2.1.6. The additive inverse in Qp is given by

−1 =

∞∑
i=0

(p− 1)pi

Indeed, if we add 1 to this series, it is clear that the terms will cancel to give 0.

The following result will be of theoretical importance to us throughout the rest of the discussion.

It highlights a unique characteristic of non-Archimedean absolute values which is in stark contrast to

Archimedean absolute values.

Proposition 2.1.7. Let { ai } ⊆ Qp be a sequence of p-adic numbers. Then the series

S =
∞∑
i=0

ai

converges if and only if the absolute values of the terms of { ai } converges to 0.

Proof. The forward implication is clear from elementary analysis. For the opposite implication, let SN

represent the N th partial sum of S. Then

|SM − SN |p = |aN+1 + aN+2 + · · ·+ aM |p

≤ max{|aN+1|p, . . . , |aM |p}

Passing to the limit M,N →∞ on both sides, we see that limN→∞ SN = 0.

2.2 Hensel’s Lemma and Ostrowski’s Theorem

Hensel’s Lemma is a result concerning solutions of polynomial equations in Qp. The result implies that

if a polynomial f(X) ∈ Zp[X] has a root modulo p then it has a root in Zp. Such a root is obtained
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by ‘lifting’ the solution inductively to higher powers of p. Hensel’s Lemma (and generalisations thereof)

will be of the utmost importance in discussing the proof of Dwork’s Theorem.

Theorem 2.2.1 (Hensel’s Lemma). Let f(X) = cmx
m + · · · + c0 ∈ Zp[X] be a polynomial. Denote by

f ′(X) the formal derivative of f(X). Suppose there exists an a0 ∈ Zp such that f(a0) ≡ 0 (mod p) and

f ′(a0) 6≡ 0 (mod p). Then there exists a unique a ∈ Zp such that f(a) = 0 and a ≡ a0 (mod p).

Proof. We claim that there exists a unique sequence of rational integers { ai } such that for all n ≥ 1 we

have

1. f(an) ≡ 0 (mod pn+1)

2. an ≡ an−1 (mod pn)

3. 0 ≤ an < pn+1

We shall prove the existence of such a sequence by induction.

Indeed, let n = 1. Let ã0 represent the unique element of Fp congruent to a0 mod p. Now if an

integer a1 were to satisfy conditions (2) and (3), it would be of the form ã0 + b1p for some 0 ≤ b1 < p.

Using the binomial theorem, we proceed by investigating the behaviour of f(a1) modulo p2:

f(a1) = f(ã0 + b1p) =
m∑
i=1

ci(ã0 + b1p)
i

=
m∑
i=1

(ciã
i
0 + iciã

i−1
0 b1p+O(p2))

≡
m∑
i=1

ciã
i
0 +

(
m∑
i=1

iciã
i−1
0

)
b1p (mod p2)

= f(ã0) + f ′(ã0)b1p

By hypothesis, we have that f(a0) ≡ 0 (mod p). Hence we can always find an α ∈ { 0, 1, . . . , p− 1 } such

that f(ã0) ≡ αp (mod p2). Hence

f(a1) ≡ 0 (mod p2) ⇐⇒ αp+ f ′(ã0)b1p ≡ 0 (mod p2)

⇐⇒ α+ f ′(ã0)b1 ≡ 0 (mod p)

By hypothesis we have f ′(a0) 6≡ 0 (mod p) and thus this equation can always be solved for b1. Using

Lemma 2.1.4, we can choose b1 ∈ { 0, 1, . . . , p− 1 } such that b1 ≡ −α/f ′(ã0) (mod p).

Now assume that the claim is true for all a1, . . . , an−1. We need to show that it is true for an.

Conditions (2) and (3) again imply that we require an = an−1 + bnp
n with 0 ≤ bn < p. Inserting this

into the polynomial f(X) and ignoring terms divisible by pn+1 we have

f(an) = f(an−1 + bnp
n)

≡ f(an−1) + f ′(an−1)bnp
n (mod pn+1)
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By the induction hypothesis, we know that f(an−1) ≡ 0 (mod pn). Hence we can write f(an−1) ≡ α′pn

(mod pn+1). We now have

αpn + f ′(an−1)bnp
n ≡ 0 (mod pn+1) ⇐⇒ α′ + f ′(an−1)bn ≡ 0 (mod p)

Furthermore, since an−1 ≡ a0 (mod p) it follows that f ′(an−1) ≡ f ′(a0) 6≡ 0 (mod p). We can then solve

for bn in the above equation as done before for b1. This completes the proof of the claim.

Now let a = ã0 + b1p+ . . . . For all n ≥ 0 we have f(a) ≡ f(an) ≡ 0 (mod pn+1) and thus f(a) = 0.

The uniqueness of such an a follows directly from the uniqueness of the sequence. This completes the

proof of the theorem.

Example 2.2.2. Let p be an odd prime. Hensel’s Lemma allows us to prove that Zp contains a

(p − 1)th root of unity. Indeed, consider the polynomial f(X) = Xp−1 − 1. By FF2, we have that

every non-zero element of Fp is a root of f(X). Furthermore, the formal derivative of f(X) is given by

f ′(X) = (p− 1)Xp−2. We have that

f ′(X) ≡ −Xp−2 (mod p)

whose only root modulo p is 0. Appealing to Hensel’s lemma, we see that Zp contains exactly p − 1

(p− 1)th roots of unity.

We end this section with a result that is of independent interest. For a proof of this theorem, see

[Kob84, p.3–5]. Recall that two absolute values | · |1 and | · |2 defined on a field K are said to be

equivalent if they induce the same topology on K; this is equivalent to saying that | · |1 = | · |α2 for some

strictly positive α ∈ R.

Theorem 2.2.3 (Ostrowski’s Theorem). Let | · | be a non-trivial absolute value on Q. Then | · | is

equivalent to either | · |∞ or | · |p for some prime p.

Ostrowski’s Theorem immediately implies that the only possible non-trivial completions of Q are

the p-adic numbers or the real numbers. This is another manifestation of the local-global phenomenae

discussed earlier on in the introduction.

2.3 Absolute values on finite extensions of Qp

The main goal of this chapter is to construct an algebraically closed, complete field containing Qp. This

will allow us to do analysis in a p-adic setting while also guaranteeing that all polynomials have roots.

It turns out, as we shall soon see, that the p-adic situation is very different to the real situation. Indeed,

the complex numbers can be obtained simply by adjoining i =
√
−1 to R. We are not so lucky in the

p-adic setting - there exists no such number, algebraic over Qp, which yields the p-adic analogue of C.
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Hence we must investigate the behaviour of finite field extensions of Qp. The first order of business is

extending the p-adic absolute value | · |p to finite extensions K/Qp.

Let V be a vector space defined over a field K equipped with an absolute value | · |. Recall that two

norms || · ||1 and || · ||2 on V are equivalent if they generate the same topology on V . Throughout this

section, we shall provide some results concerning vector spaces over fields without proof. Such proofs

can be found in either [Rob00, p.90-96] or [Gou93, p.123-136].

Theorem 2.3.1. Let K be a field complete with respect to an absolute value and V a vector space over

K. Then all norms on V are equivalent.

Corollary 2.3.2. Let K be a finite extension of Qp. Then there exists at most one absolute value on K

extending | · |p.

Let K be a finite extension of Qp and let α ∈ K be of degree n over Qp. We seek to determine how

|α|p is defined if such an absolute value were to exist. Let L be a Galois extension of Qp containing K.

Let G = Gal(L/Qp). Suppose that | · | is an extension of the p-adic absolute value to L. By Corollary

2.3.2, | · | is the unique absolute value on L extending | · |p. It is easy to see that |σ(·)| is again an absolute

value for all σ ∈ G and so |σ(·)| = | · |. Hence the absolute value of α is equal to the absolute value of

each of its conjugates. Now recall the norm of α from Qp(α) to Qp is given by

NQp(α)/Qp(α) =
n∏
i=1

ai

where the ai are the conjugates of α. By definition, this is an element of Qp, namely the constant term

of the minimal polynomial of α (up to a sign). Hence we may write

|NQp(α)/Qp(α)|p = |NQp(α)/Qp(α)|

=

∣∣∣∣∣
n∏
i=1

ai

∣∣∣∣∣
= |α|n

Thus if there were to exist an absolute value | · | extending | · |p to a finite extension K/Qp, it would

necessarily be given by

|α| = |NQp(α)/Qp(α)|1/np

where n is the degree of the minimal polynomial of α over Qp. It remains to show that our definition of

| · | is indeed an absolute value.

We must first take a detour and state some results regarding the topologies of p-adic fields. Recall

that a topological space is locally compact if every point has a compact neighbourhood.

Lemma 2.3.3. Qp is locally compact with respect to the topology induced by | · |p.
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Proof. We claim that it suffices to show that Zp is compact. Indeed, Zp is simply the unit ball centered

at 0. Then, given any non-zero point x ∈ Qp, x + Zp is a compact neighbourhood of x. It then follows

that Qp would be locally compact.

Now since | · |p induces the metric topology on Zp, it suffices to show that Zp is sequentially compact.

To this end, let {αn } be a sequence of p-adic integers. We need to show that {αn } has a convergent

subsequence. We may write

αn =
∞∑
i=0

a
(n)
i pi

for all n ∈ N. Appealing to the pigeonhole principle, there exists an element c0 ∈ Fp such that a
(n)
0 = c0

for infinitely many n. Hence there exists a sequence of natural numbers nj , indexed over j, such that

{αnj } is a sequence of p-adic integers all with the same first p-adic digit. We may continue this process

inductively to obtain a collection of sequences, say {α(m)
n }n∈N for all m ≥ 0. Here the m represents

the fact that all terms in {α(m)
n } are the same up to, and including, the mth p-adic digit. Taking the

diagonal sequence of this collection, {α(k)
k }k∈N, yields a subsequence of {αn } that converges to a p-adic

integer. Thus the lemma is proved.

Let K be a field equipped with an absolute value | · |, V an n-dimensional vector space over K and

{ v1, . . . , vn } a K-basis for V . Given v = a1v1 + · · ·+ anvn ∈ V , we define the sup-norm on V to be

|v|sup = max
1≤i≤n

|ai|

It is readily verified that the sup-norm is indeed a vector space norm.

Proposition 2.3.4. Let K be a locally compact field equipped with an absolute value | · |. Then any finite

dimensional normed vector space over K is locally compact.

Corollary 2.3.5. Let K be a locally compact field equipped with an absolute value | · |. Let V be a finite

dimensional vector space over K. Then, with respect to some basis, the set

S = { v ∈ V | |v|sup = 1 }

is compact.

We are finally ready to show that our proposed absolute value satisfies the conditions we desire:

Theorem 2.3.6. Let K be a finite extension of Qp and α ∈ K. Let n = [Qp(α) : Qp]. Then

|α|K := |NQp(α)/Qp(α)|1/np

is a non-Archimedean absolute value on K extending the original p-adic absolute value of Qp.

Proof. It is clear from the definition of NQp(α)/Qp(α) that |α|K = 0 if and only if α = 0. Furthermore, the

definition of the norm also implies that | · |K extends the original p-adic absolute value on Qp. Indeed,
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if α ∈ Qp then its minimal polynomial is X − α over Qp. Looking at the constant term of this shows

that | · |K agrees with the earlier definition for Qp. Now, by an equivalent definition, NQp(α)/Qp(α) is the

determinant of the linear map

µα : Qp(α) 7→ Qp(α)

x 7→ αx

Since determinants commute with matrix multiplication, so does | · |K . It remains to show that | · |K

satisfies the ultrametric inequality. Choose a Qp-basis for K, say { v1, . . . , vm }. Lemma 2.3.3 implies

that Qp is locally compact. Corollary 2.3.5 then implies that the set

S = {α ∈ K | |α|sup = 1 }

is compact with respect to the chosen basis. Since |·|p is a continuous function2 on K, and any continuous

function is bounded on a compact set, it follows that for all α ∈ S we have

0 < c ≤ |α|K ≤ C

for some c, C ∈ R. Now, given any x ∈ K×, we may choose a λ ∈ Qp such that |x|sup = |λ|p. Thus

|x/λ|sup = 1 and we have

c ≤
∣∣∣x
λ

∣∣∣
K
≤ C

This implies that

c|λ|p ≤ |x|K ≤ C|λ|p ⇐⇒ c |x|sup ≤ |x|K ≤ C |x|sup

Now suppose that |x|K ≤ 1. Then

|1 + x|K ≤ C |1 + x|sup ≤ C max{|1|sup , |x|sup} ≤ C max{|1|sup , c
−1} = ε = εmax{|1|K , |x|K}

for some ε ∈ R.

Now, for the general case, suppose that |y|p ≥ |x|p for some y, x ∈ K×. Then |x/y|p ≤ 1 and we can

apply the above inequality to get ∣∣∣∣1 +
x

y

∣∣∣∣
K

≤ εmax

{
|1|K ,

∣∣∣∣xy
∣∣∣∣
K

}
Multiplying through by |y|K yields

|x+ y|K ≤ εmax{|x|K , |y|K}

To complete the proof, we note that | · |K extends | · |p which forces ε = 1.

Henceforth, we shall denote this new absolute value by | · |p as is befitting for an extension of the

original p-adic absolute value on Qp.

2the determinant of µα is a continuous function on K since it can be expressed as the characteristic polynomial of µα
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The theorem clearly implies that there exists a unique non-Archimedean absolute value on the al-

gebraic closure of Qp extending | · |p on Qp. Indeed, if α ∈ Qp then the absolute value of α in a finite

extension of Qp containing α is independent of the actual extension chosen - it depends simply on the

element itself. It therefore makes sense to let |α|p on Qp be equal to |α|p in any finite extension of Qp

that contains α.

2.4 Structure and ramification of finite extensions of Qp

We now look towards examining the structure of certain key finite extensions of Qp. Let K be a finite

extension of Qp of degree n. Then there exists a unique extension of the p-adic absolute value to K.

Given α ∈ K, we can recover the p-adic valuation on K as follows:

vp(α) = − logp |α|p = − logp |NQp(α)/Qp(α)|1/np = − 1

n
logp |NQp(α)/Qp(α)|p

It is easily verified that vp is a valuation on K from the corresponding properties of | · |p.

Now, vp is clearly a homomorphism between the multiplicative group K× and the additive group of

Q. In particular, im (vp) ⊆ (1/n)Z. Choose some a/e ∈ im (vp) such that a and e are coprime and e

is the largest possible denominator. Then, by Bézout’s identity, there exists integers x and y such that

ax+ ey = 1. It follows that

x
a

e
=

1

e
− y

Now, x(a/e), y ∈ (1/n)Z whence 1/e ∈ (1/n)Z. But e was chosen to be the greatest possible divisor of

n so infact im (vp) = (1/e)Z. e is referred to as the index of ramification of K over Qp. If e = 1 then

K is an unramified extension. If e = n then K is totally ramified.

Definition 2.4.1. Let K/Qp be a finite extension of degree n. We define the valuation ring of K to

be the set

OK = {α ∈ K | |α|p ≤ 1 }

whose unique maximal ideal is

pK = {α ∈ K | |α|p < 1 }

The fact that OK is a ring and pK is the unique maximal ideal of OK follows from the definition of

| · |p. We call the field OK/pK the residue field of K. The following proposition justifies referring to

OK as the ring of integers of K:

Proposition 2.4.2. Let K/Qp be a finite extension of degree n. Then OK is the integral closure of Zp

in K.
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Proof. Let α ∈ K be integral over Zp. Then α is a root of some polynomial, say

f(X) = Xm + am−1X
m−1 + · · ·+ a0 ∈ Zp

We claim that |α|p ≤ 1. Suppose, for a contradiction, that |α|p > 1. Then

|α|mp = |αm|p = |am−1αm−1 + · · ·+ a0|p ≤ max
0≤i≤m−1

|aiαi|p

= max
0≤i≤m−1

|αi|p = |α|m−1p

which is a contradiction. Hence α ∈ OK .

Now suppose that α ∈ OK . We need to show that α is integral over Zp. Let α = α1, . . . , αn be the

conjugates of α over Qp. Since all αi have the same norm, we must have that |αi|p ≤ 1 for all 1 ≤ i ≤ n.

Let f(X) be the minimal polynomial of α over Qp. Then the coefficients of f(X) are sums and products

of the αi and thus the coefficients themselves must all lie in Zp. Hence α is integral over Zp.

Proposition 2.4.3. Let K/Qp be a finite extension of degree n. Let e be the ramification index of the

extension. If π ∈ K satisfies vp(π) = 1/e then pK = πOK . Such a π is referred to as a uniformiser of

K.

Proof. Since pK is the unique maximal ideal of OK , we must have that πOK ⊆ pK .

Now let x ∈ pK , we need to show that x = απ for some α ∈ OK . This is equivalent to showing that

xπ−1 ∈ OK . We have that

vp(xπ
−1) = vp(x)− vp(π) = vp(x)− 1

e

Since e is the index of ramification of K/Qp and vp(x) > 0, we must have that vp(x) > 1/e. This implies

that vp(xπ
−1) > 0 which is equivalent to xπ−1 ∈ OK . We therefore have that pK ⊆ πOK as desired.

The following two results relate the index of ramification of a p-adic field to its degree over Qp. Their

proofs can be found in [Gou93, p.146].

Proposition 2.4.4. Let K/Qp be a finite extension of degree n. Then OK/pK is a field extension of Fp

of degree at most n; this is referred to as the inertial degree of K.

Theorem 2.4.5. Let K/Qp be a finite extension of degree n. If e is the index of ramification of K and

f is its inertial degree then n = ef .

It turns out that Hensel’s Lemma generalises to p-adic field extensions K/Qp. The following formu-

lation will be very useful, especially for the proof of Dwork’s Theorem

Theorem 2.4.6 (Hensel’s Lemma). Let K be a finite extension of Qp and π ∈ K a uniformiser. Let

f(X) = cnX
n + · · ·+ c0 ∈ OK [X]. Denote by f ′(X) the formal derivative of f(X). Suppose there exists

an a0 ∈ OK such that f(a0) ≡ 0 (mod πOK) and f ′(a0) 6≡ 0 (mod πOK). Then there exists a unique

algebraic integer α ∈ OK such that α ≡ a0 (mod πOK) and f(α) = 0.
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Proof. The proof of this theorem is exactly the same as that of Theorem 2.2.1. We need only replace Zp

by OK and reduction modulo p by reduction modulo πOK .

Corollary 2.4.7. Let K/Qp be a finite extension. If f is the inertial degree of K then O×K contains the

cyclic group of (pf − 1)th roots of unity.

Proof. The non-zero elements of the residue field OK/pK are a cyclic group of pf − 1 elements. These

elements are the roots of the polynomial f(X) = Xpf−1 − 1 over OK/pK . We may choose a lift of these

roots in O×K and use this for Hensel’s Lemma. Indeed, f ′(X) = −Xpf−2 which is non-zero for X 6= 0.

Hensel’s Lemma then shows that O×K contains the cyclic group of (pf − 1)th roots of unity.

Theorem 2.4.8. There exists a unique unramified extension of Qp of degree f and it is obtained by

adjoining a primitive (pf − 1)th root of unity to Qp.

Proof. Fix a generator α of F×
pf

and let f(X) = Xf +af−1X
f−1+ · · ·+a0 be its minimal polynomial over

Fp. For all 1 ≤ i ≤ f − 1, choose a lift of ai in Zp and label it ai. Let f(X) = Xf + af−1X
f−1 + · · ·+ a0.

Then f(X) ∈ Zp is irreducible over Qp. Indeed, if it were reducible, then we could write

f(X) = g(X)h(X)

for some g(X), h(X) ∈ Zp[X]. Reducing modulo p yields a decomposition of f(X) which contradicts the

fact that f(X) is irreducible. Now let α ∈ Qp be a root of f(X). Let K = Qp(α) so that [K : Qp] = f .

Now, α ∈ OK since it is the integral closure of Zp in K. Clearly, α + pK is a root of f(X) in OK/pK .

We therefore have that [OK/pK : Fp] ≥ f . By Proposition 2.4.4, we know that f = [OK/pK : Fp] ≤

[K : Qp] = f . Hence [OK/pK : Fp] = [K : Qp] = f . By Theorem 2.4.5, we must have that the index of

ramification is 1 and thus K is an unramified extension of Qp.

We now show that K is obtained by adjoining a primitive (pf−1)th root of unity to Qp and this is the

unique such unramified extension of Qp. By Corollary 2.4.7, we have that K contains all the (pf − 1)th

roots of unity. To prove that K = Qp(ω) for some primitive (pf − 1)th root of unity ω, we claim that

the smallest extension of Qp that contains all the (pf − 1)th roots of unity is of degree f and is therefore

necessarily equal to K.

We have that Qp ⊆ L = Qp(ω) ⊆ K. The conjugates of ω are the (pf − 1)th roots of unity and thus

OL/pL must contain Fpf ∼= OK/pK . Since [OL/pL : Fp] ≤ [L : Qp], we must have that [L : Qp] ≥ f . But

then f = [K : Qp] ≥ [L : Qp] ≥ f whence [K : Qp] = [L : Qp]. Hence K = Qp(ω) and we are done.

2.5 The Teichmüller Lift

The following is of fundamental importance to Dwork’s proof and merits its own section.
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Recall from the previous section that there exists a unique unramified extension of degree f of Qp, say

K, that is obtained by adjoining a primitive (pf − 1)th root of unity to Qp. K contains all the (pf − 1)th

roots of unity and these can be obtained through lifting from the residue field of K to OK . This process

of lifting elements of finite fields to roots of unity is called the Teichmüller lift and the p-adic roots

of unity are the Teichmuüller representatives of the elements of F×
pf

. Note that we can extend the

Teichmüller lift to include the 0 element of Fpf whose Teichmüller representative in the relevant p-adic

field is 0.

More formally, let f > 0 and Kf the unique unramified extension of Qp of degree f . Then there

exists a unique multiplicative group homomorphism called the Teichmüller lift

τf : Fpf → OKf

a 7→ τf (a)

such that the following diagram commutes

OKf

Fpf OKf /pKf

mod pKfτf

id

Hence if µpf−1(OKf ) is the cyclic group consisting of the (pf − 1)th roots of unity in OKf then τf is a

multiplicative homomorphism between Fpf and µpf−1(OKf ) ∪ { 0 } such that τf (0) = 0.

2.6 Constructing Cp

Recall, from earlier on in this chapter, that we are aiming to construct an algebraically closed, complete

field containing Qp. We are now finally ready to construct such a field.

We first prove a result which shows the contrast between the behaviour of C and Qp.

Proposition 2.6.1. Qp has infinite degree over Qp.

Proof. Let K be any finite extension of Qp and d ≥ 2. If π is a uniformiser for K then, clearly, πOK

is a prime ideal. Now consider the polynomial Xd − π ∈ OK [X]. This is Eisenstein at π and is thus

irreducible over K. Hence, for each K, there exists an infinite family of irreducible polynomials so we

must have that Qp is an infinite extension of Qp.

This is clearly very different to the Archimedean case where [C : R] = 2. The following result shows

us that we are not yet done with constructing a p-adic analogue to C.

Proposition 2.6.2. Qp is not complete with respect to | · |p.
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Proof. It suffices to exhibit a Cauchy sequence { ci } ⊆ Qp that does not converge to any limit c ∈ Qp.

We first construct a sequence of roots of unity { ζi }, each lying in an unramified extension of Qp. Letting

ζ1 = 1, we choose the next terms in the sequence with these conditions in mind:

1. ζi−1 ∈ Qp(ζi)

2. [Qp(ζi) : Qp(ζi−1)] > i

Indeed, let ζi be a primitive (p(i+1)!−1)th root of unity for all i ≥ 2. For the first condition, we first observe

that Qp(ζi−1) ⊆ Qp(ζi) if ζi−1 divides ζi. Clearly, i!|(i+ 1)! from which it follows that pi! − 1|p(i+1)! − 1.

We thus see that ζi−1|ζi. Finally, we have that [Qp(ζi) : Qp] = (i + 1)! and [Qp(ζi−1) : Qp] = i!. Hence

[Qp(ζi) : Qp(ζi−1)] = i+ 1.

Now consider the series
∑∞

i=0 ζip
i whose partial sums clearly form a Cauchy sequence in Qp. We

claim that this sequence does not converge to any limit in Qp. Suppose, for a contradiction, that it

converges to c ∈ Qp. By definition, c is the root of a monic irreducible polynomial over Qp. Suppose

that the degree of such a polynomial is d so that [Qp(c) : Qp] = d. Let cd denote dth partial sum of our

series and consider

c− cd =

∞∑
i=d+1

ζip
i

Using the fact that |ζi|p = 1, we have

|c− cd|p ≤
∞∑

i=d+1

|ζipi|p =
∞∑

i=d+1

|pi|p ≤ p−(d+1)

Let σ be a Qp-automorphism of Qp. σ must preserve | · |p so we have that

|σ(c)− σ(cd)|p = |σ(c− cd)|p = |c− cd|p ≤ p−(d+1)

By construction, we have [Qp(ζd) : Qp(ζd−1)] = d+ 1. Hence there exist d+ 1 Qp(ζd−1)-automorphisms

of Qp(ζd). These fix all ζ1, . . . , ζd−1 but have distinct images of ζd.

If i 6= j we have

σi(cd)− σj(cd) =

(
d−1∑
i=0

ζip
i + σi(ζd)p

d

)
−

(
d−1∑
i=0

ζip
i + σj(ζd)p

d

)

= (σi(ζd)− σj(ζd))pd

Now σi(ζd) and σj(ζd) are distinct (p(i+1)!− 1)th roots of unity and thus they are not congruent modulo

p. We thus have that

|σi(cd)− σj(cd)|p = p−d
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We thus see that when applying the ultrametric inequality, equality infact holds:

= max{|σi(c)− σi(cd)|p, |σi(cd)− σj(cd)|p, |σj(c)− σj(cd)|p}

= p−d

This implies that σi(c) 6= σj(c). Therefore, σ1(c), . . . , σd+1(c) are d + 1 distinct conjugates of c which

means that the minimal polynomial of c over Qp has degree d + 1. This is clearly a contradiction as it

was assumed that d was the degree of such a polynomial. Hence the Cauchy sequence { ci } does not

converge to any element in Qp and we are done.

The previous theorem suggests to us that we should pass to the completion of Qp with respect to | · |p.

Proceeding in the same way as we did earlier from Q to Qp, we construct the field of complex p-adic

numbers, denoted Cp. We may also extend | · |p and vp to Cp in exactly the same fashion. Hence we

have a p-adic field that contains Qp as a dense subset and is complete with respect to a non-Archimedean

absolute value | · |p. If we can show that Cp is algebraically closed then we have achieved our goal of

constructing a p-adic analogue to C.

Before we can accomplish this, we require the following small lemma:

Lemma 2.6.3 (Krasner’s Lemma). Let K be a field complete with respect to a non-Archimedean absolute

value | · |. Let f(X) ∈ K[X] be a polynomial with roots α = α1, . . . , αn ∈ K[X]. If β ∈ K is such that

|β − α| < |β − αi|

for all 1 < i ≤ n then K(α) ⊆ K(β)

Proof. Let L = K(β) and F = L(α1, . . . , αn). Then F/L is a Galois extension since F is the splitting

field for the polynomial f(X) over L. Let σ ∈ Gal(F/L) be an L-automorphism of F . Since | · | is

invariant under the action of σ, we have

|β − α| = |σ(β − α)| = |β − σ(α)|

Using this, we have

|α− σ(α)| ≤ max{|α− β|, β − σ(α)} = |α− β| < |α− αi|

for all 1 < i ≤ n. Since σ was arbitrary, we must have that α = σ(α). Hence α ∈ L = K(β).

Proposition 2.6.4. Cp is algebraically closed.

Proof. Let α ∈ Cp. Let f(X) =
∑n

i=1 aiX
i ∈ Cp[X] denote its minimal polymomial. Scaling f(X), we

may assume that it is an element of OCp [X] and thus |α|p ≤ 1. Let ε = min1≤i≤n(|α − αi|p) where the

α = α1, . . . , αn ∈ Cp are the conjugates of α. By construction, Qp is dense in Cp so we may choose

g(X) =
∑n

i=1 biX
i ∈ OQp such that |ai − bi|p < εn.
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Let β1, . . . , βn ∈ Qp be the roots of g(X). Then

n∏
i=1

|α− βi|p = g(α) = |g(α)− f(α)|p ≤ max
1≤i≤n

{|ai − bi|p} < εn

Hence there exists at least one 1 ≤ i ≤ n such that |α − βi|p < ε = min1≤i≤n |α − αi|p. Appealing

to Krasner’s Lemma, we see that Cp(α) ⊆ Cp(βi) = Cp. Since α was an arbitrary element of Cp, the

proposition is proved.

We have thus finally accomplished what we set out to do: we have constructed the p-adic analogue to

C. Cp is the smallest algebraically closed field that contains Q and is complete with respect to the p-adic

absolute value | · |p. It is thus a perfect domain in which to perfom p-adic analysis and its usefulness will

be immeasurable in the proof of Dwork’s Theorem.



Chapter 3

p-adic analysis

The aim of this chapter is to investigate elementary p-adic analysis. In order to discuss Dwork’s proof,

we require an understanding of some of the standard mathematical functions. We also aim to prove two

key results, Dwork’s Lemma and the Weierstrass Preparation Theorem, which are at the heart of the

proof of Dwork’s Theorem.

3.1 The exponential, logarithm and binomial expansion

The main objects of study throughout this chapter will be power series with Cp coefficients. We will

denote the ring of such objects by Cp[[X]]. Let c and r be positive and strictly positive real numbers

respectively. We denote the closed disc of radius r about c in Cp by Dc[r]. Similarly, we denote the open

disc by Dc(r). If c = 0 then we will drop the subscript and simply write D[r] and D(r).

We also recall Proposition 2.1.7 from Chapter 2 which states that a series converges with respect to

a non-Archimedean absolute value if and only if the absolute values of its terms converge to 0.

Definition 3.1.1. Let f(X) =
∑∞

i=0 aiX
i ∈ Cp[[X]] be a power series. We define the radius of

convergence of f(X) to be

r = lim sup
n→∞

|an|
− 1
n

p

It is readily verified by a standard analytic argument that f(X) converges if |X|p < r and diverges if

|X|p > r (see [Kob84, p.76-77] for more details). If X = r then one usually must check the convergence

of the series explicitly.

Proposition 3.1.2. Let f(X) ∈ Zp[[X]] be a power series. Then f(X) converges on D(1).

Proof. Let f(X) =
∑∞

i=0 aiX
i for some ai ∈ Zp and suppose that x ∈ D(1). Then, by hypothesis,

|x|p < 1 and |ai|p ≤ 1 for all i. It thus follows that |anxn|p ≤ |x|np . This goes to 0 as n→∞ and hence

f(X) converges on D(1).

Proposition 3.1.3. Let f(X) =
∑∞

i=0 aiX
i ∈ Cp[[X]] be a power series. If f(X) converges on a (closed

or open) disc D then f(X) is continuous on that disc.

Proof. Let x, y ∈ D. We assume that x 6= 0. Suppose there exists a δ > 0 such that |x − y|p < δ and

20
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δ < |x|p. It follows immediately from the ultrametric inequality that |x|p = |y|p. Then

|f(x)− f(y)|p =

∣∣∣∣∣
∞∑
i=0

(aix
i − aiyi)

∣∣∣∣∣
p

≤ max
i≥0
{|aixi − aiyi|p}

= max
i≥0
{|ai|p(x− y)(xi−1 + xi−2y + · · ·+ xyi−2 + yi−1)}

We now observe that

|xn−1 + xn−2y + · · ·+ xyn−2 + yn−1|p ≤ max
1≤i≤n

{|xn−1yi−1|p} = |x|n−1p

Hence

|f(x)− f(y)|p ≤ max
i≥0
{|ai|p|x− y|p|x|i−1p } <

δ

|x|p
max
i≥0

(|aixi|p)

Now by hypothesis, f(X) converges on a disc which means the absolute values of its terms converges to

0 on the same disc. Hence |anxn|p is bounded above by some real constant. We may therefore, given

ε > 0, make |f(x)− f(y)| < ε by choosing a reasonable δ < |x|p.

The case where x = 0 is an immediate consequence of the convergence of f(X) on D.

Proposition 3.1.4. The p-adic logarithm function defined by

logp(1 +X) =
∞∑
n=1

(−1)n+1Xn

n

is a continuous function from D(1) to Cp.

Proof. We first calculate the radius of convergence of logp(X). We have that

lim
n→∞

∣∣∣∣(−1)n+1

n

∣∣∣∣1/n
p

= lim
n→∞

|n−1/n|p = 1

Hence logp(X) has radius of convergence 1. If |x|p = 1 then we have

|anxn|p = |n−1|p (3.1)

but this is greater than or equal to one for all n ≥ 1. Hence the logarithm converges on D(1). By

Proposition 3.1.3, logp(1 +X) is therefore continuous on D(1).

Henceforth, the notation logp shall refer excusively to the p-adic logarithm and not the standard real

base-p logarithm.

Lemma 3.1.5 (Legendre’s Formula). Let n ∈ Z. Suppose that n has p-adic expansion a0 + a1p+ · · ·+

amp
m for some ai ∈ Fp. If Sn = a0 + · · ·+ am then

vp(n!) =
n− Sn
p− 1
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Proof. We first count the number of factors contributing to vp(n!). It is easy to see that there are bn/pc

multiples of p in n. Each of these multiples contributes one factor of p to n!. Similarly, each multiple of

p2 contributes a factor of p - there are bn/p2c such factors. We continue like this to obtain an infinite

sum for vp(n!). From the p-adic expansion of n, we see this sum must have only finitely many terms.

We thus have that

vp(n!) =
m∑
i=1

⌊
n

pi

⌋
The lemma then follows upon inserting the p-adic expansion of n into the above equation and applying

the standard formula for geometric series.

Proposition 3.1.6. The p-adic exponential function defined by

expp(X) =
n∑
i=0

Xn

n!

is a continuous function from D(p−1/(p−1)) to Cp.

Proof. We first calculate the radius of convergence of expp. By Legendre’s Formula, we have that

r =

(
lim sup
n→∞

∣∣∣∣ 1

n!

∣∣∣∣1/n
p

)−1

=

(
lim sup
n→∞

p(n−Sn)/n(p−1)
)−1

= p−1/(p−1)

as desired. Hence by Proposition 3.1.3, expp(X) is continuous on the disc D(p−1/(p−1)).

Theorem 3.1.7. The p-adic logarithm is an isomorphism between the additive group of D1(p
−1/(p−1))

and the multiplicative group of D(p−1/(p−1)). It’s inverse is the p-adic exponential.

Proof. Let x, y ∈ D(p−1/(p−1)). It suffices to prove the following three properties:

1. logp[(1 + x)(1 + y)] = logp(1 + x) + logp(1 + y)

2. expp(x+ y) = expp(x) expp(y)

3. expp and logp are mutually inverse.

It is easy to see that any series that converges under a non-Archimedean absolute value is absolutely

convergent and we may thus rearrange terms so that, in the first property, we have

logp[(1 + x)(1 + y)] =

∞∑
n=1

(−1)n+1(x+ y + xy)n

n
=

∞∑
i=1

amnx
myn
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for some rational numbers cmn. Now, the first property must hold in Q[[X,Y ]] so the only non-zero

coefficients in the above series are an0 = a0n =
∑∞

i=1(−1)n+1/n and thus the first property is proven

over Cp[[X,Y ]]. The second property follows in exactly the same way.

We can apply the same reasoning to the third property but we must ensure that there are no issues

with convergence. Indeed, let x ∈ D(p−1/(p−1)). Then

vp

(
xn

n!

)
=

n

p− 1
− n− Sn

p− 1
=

Sn
p− 1

> 0

whence expp(x)− 1 ∈ D(1). It then follows that logp(1 + expp(x)− 1) = x.

Conversely, we have that

vp(logp(1 + x)) ≥ min
n≥1

vp

(
xn

n

)
We claim that this is greater than (p− 1)−1. Indeed

vp

(
xn

n

)
− 1

p− 1
>

n

p− 1
− vp(n)− 1

p− 1
=
n− 1

p− 1
− vp(n)

By inspection we see that the right hand side is equal to 0 when n = 1, p and is greater than 0 everywhere

else. The claim is thus proved. Hence logp(1 + x) ∈ D(p−1/(p−1)) and expp(logp(1 + x)) = 1 + x as

required.

Definition 3.1.8. Let a ∈ Cp. We define the p-adic binomial expansion to be

Ba,p(X) =

∞∑
n=0

a(a− 1) . . . (a− n+ 1)

n!
Xn

Proposition 3.1.9. Let a ∈ Zp. Then Ba,p(X) ∈ Zp[[X]] and is continuous on D(1).

Proof. We must first show that

a(a− 1) . . . (a− n+ 1)

n!
∈ Zp

Consider the polynomial f(X) = X(X − 1) . . . (X − n+ 1). This is clearly a continuous function hence

there exists an a0 ∈ Z and a δ > 0 such that if |a − a0|p ≤ δ then |f(a) − f(a0)|p ≤ 1. Clearly, we can

choose a0 such that ∣∣∣∣f(a)

n!
− f(a0)

n!

∣∣∣∣
p

≤ 1

Now, f(a0)/n! ∈ Z. This implies that ∣∣∣∣f(a0)

n!

∣∣∣∣
p

≤ 1

By the ultrametric inequality, it follows that

1 ≥
∣∣∣∣f(a)

n!

∣∣∣∣
p

=

∣∣∣∣a(a− 1) . . . (a− n+ 1)

n!

∣∣∣∣
p
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and thus Ba,p(X) ∈ Zp[[X]]. By Proposition 3.1.2, Ba,p(X) converges on D(1) and is thus continuous

on the same disc.

The binomial expansion is very useful for constructing roots of certain numbers. Indeed, let a = 1/n

for some n not divisible by p. Then a ∈ Zp and we have the following given x ∈ D(1)

(Ba,p(X))n = 1 +X

which follows from consideration of the same identity over Q[[X]]. Hence Ba,p(x) is an nth root of 1 +x.

This motivates the following notation for rational a:

Ba,p(X) = (1 +X)a

3.2 Dwork’s Lemma

We will now prove an extraordinary result due to Dwork. Using this lemma, we shall construct a power

series which will be of importance to us in the discussion of Dwork’s proof.

Recall from elementary ring theory that if R is a commutative ring with unity then f(X) ∈ R[[X]]

is invertible in R[[X]] if and only if the constant term of f(X) is invertible in R.

Theorem 3.2.1 (Dwork’s Lemma). Let f(X) = 1 +
∑∞

n=1 anX
n ∈ 1 + XQp[[X]]. Then f(X) ∈

1 +XZp[[X]] if and only if

f(Xp)

(f(X))p
∈ 1 + pXZp[[X]]

Proof. First suppose that f(X) ∈ 1 + XZp[[X]]. Recall that (a + b)p ≡ ap + bp (mod p). Furthermore,

if a ∈ Zp, then it is easy to see that ap ≡ a (mod p). Indeed, the constant term, say a0, of a is

an element of Fp and must satisfy ap−10 = 1. We thus have that f(X)p ≡ f(Xp) (mod p). Hence

f(X)p = f(Xp) + pg(X) for some g(X) ∈ XZp[[X]]. Now, f(X)p ∈ 1 +Zp[[X]] is invertible and we then

have that

f(Xp)

f(X)p
= 1− pg(X)

f(X)p
∈ 1 + pXZp[[X]]

as required.

Conversely, we have that

f(Xp) = (f(X))pg(X)

for some g(X) ∈ 1 + pXZp[[X]]. Now writing f(X) =
∑∞

i=0 aiX
i and g(X) =

∑∞
i=0 biX

i. We need to

show that each ai ∈ Zp. By hypothesis, we have a0 = 1. We prove by induction on i. Suppose the

statement is true for all i < n. We first examine the coefficients of the left hand side. It is easy to

see that if p|n then the coefficient of Xn on the left hand side is an/p. Otherwise, the coefficient is 0.
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Expanding the right hand side, we have(
n∑
i=0

aiX
i

)p(
1 +

n∑
i=1

biX
i

)
=

(
n∑
i=0

aiX
i

)p
︸ ︷︷ ︸

A

+

(
n∑
i=0

aiX
i

)p
︸ ︷︷ ︸

B

(
n∑
i=1

biX
i

)
︸ ︷︷ ︸

C

We first consider A modulo p. We have that(
n∑
i=0

aiX
i

)p
≡
∞∑
i=0

apiX
pi (mod p)

=
∞∑
i=0

aiX
pi

It is thus clear that the only term contributing to the coefficient of Xn, which is not congruent to 0

modulo p, is an/p in the case that p divides n. We may thus subtract an/p from both sides when equating

coefficients. By this analysis, we see that all other possible terms that contribute to the coefficient Xn

in A are elements of pZp. Now, it is easy to see (by a multinomial expansion or otherwise) that the

coefficient of Xn in A is of the form pan + α for some α ∈ pZp. This is because, by hypothesis, α is a

sum of products of ai’s for i < n. By hypothesis, these ai are elements of Zp and we have just seen that

they are each congruent to 0 modulo p.

Now, the coefficient of Xn in the power series represented by BC is an element of pZp. Indeed, each

bi is an element of pZp and the only terms from B that will contribute are similar to the above analysis

and are thus also in pZp. Rearranging, we thus see that pan ∈ pZp and hence an ∈ Zp

Intuitively, the quotient in Dwork’s Lemma is a measure of how well the power series f(X) commutes

with the map X 7→ Xp. Formulating the lemma this way, we see that if f(X) commutes up to modulo

p with the pth power map then f(X) has p-adic integral coefficients. Note that Dwork’s Lemma can be

generalised to any number of indeterminates by the same proof.

We will now use Dwork’s Lemma to show that a certain power series, which we shall make use of

later on, has p-adic integral coefficients.

Proposition 3.2.2. Let F (X,Y ) ∈ Qp[[X,Y ]] be defined as follows:

F (X,Y ) = BX,p(Y )B(Xp−X)/p,p(Y
p)B

(Xp2−Xp)/p2,p
(Y p2) . . .

where Ba,p(X) is the p-adic binomial expansion. Then F (X,Y ) ∈ Zp[[X,Y ]].

Proof. We must first check that this series is a well-defined element of 1 + (X,Y )Qp[[X,Y ]]. Using the
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shorthand notation for BX,p(Y ) we have

F (X,Y ) = (1 + Y )X(1 + Y p)(X
p−X)/p(1 + Y p2)(X

p2−Xp)/p2 . . . (1 + Y pn)(X
pn−Xpn−1

)/pn . . .

=

( ∞∑
i=0

X(X − 1) . . . (X − i+ 1)

i!
Y i

)
×

∞∏
n=1

[ ∞∑
i=0

Xpn −Xpn−1

pn

(
Xpn −Xpn−1

pn
− 1

)
. . .

(
Xpn −Xpn−1

pn
− i+ 1

)
Y ipn

i!

]
The above expansion implies that the coefficient of any XmY n can be calculated with only finitely many

terms of the infinite product. Furthermore, we can easily see that F (X,Y ) =
∑

m,n≥0 amnX
mY n ∈

1 + (X,Y )Qp[[X,Y ]].

It remains to show that amn ∈ Zp. Setting up for Dwork’s Lemma gives us

F (Xp, Y p)

F (X,Y )p
=

(1 + Y p)X
p
(1 + Y p2)(X

p2−Xp)/p(1 + Y p3)(X
p3−Xp2 )/p2 . . .

(1 + Y )pX(1 + Y p)Xp−X(1 + Y p2)(Xp2−X)/p . . .

=
(1 + Y p)X

(1 + Y )pX

We claim that the above is in 1 + (pX, pY )Zp[[X,Y ]]. Dwork’s Lemma would then imply that F (X,Y )

has coefficients in Zp. Now, 1+Y ∈ 1+Y Zp[[Y ]] and the forward implication of Dwork’s Lemma implies

that

(1 + Y p)

(1 + Y )p
= 1 + pY Z(Y )

for some Z(Y ) ∈ Zp[[Y ]]. From this we obtain

(1 + Y p)X

(1 + Y )pX
= (1 + pY Z(Y ))X =

∞∑
i=0

X(X − 1) . . . (X − i+ 1)

i!
(pY Z(Y ))i

This is obviously an element of 1 + (pX, pY )Zp[[X,Y ]] and thus F (X,Y ) ∈ Zp[[X,Y ]] by Dwork’s

Lemma.

3.3 The Weierstrass Preparation Theorem

This section is concerned with proving a p-adic analogue of the classical Weierstrass Preparation The-

orem. It is one of the main tools of Dwork’s proof of the rationality of the zeta-function. In order to

accomplish this, we shall introduce the theory of Newton polygons.

Newton polygons can be thought of as ‘physical’ representations of certain properties of power series.

In most cases, Newton polygons make it easier to read off the radius of convergence of power series.

We shall begin by introducing Newton polygons for polynomials which are a simpler case to handle.

Definition 3.3.1. Let f(X) =
∑n

i=0 aiX
i ∈ 1 + XCp[X] be a polynomial. Consider the sequence of
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points in R2 defined by

αi = (i, vp(ai))

for i ≥ 0. We define the Newton polygon of f(X) to be the lower convex hull of the sequence

{αi }. The slope of a segment of the Newton polygon joining the points (i, a), (i′, a′) is its gradient

(a′ − a)/(i′ − i). Its length is i′ − i.

Let f(X) =
∑n

i=0 aiX
i. To understand how the Newton polygon of f(X) is constructed, we place

pegs at each point (i, vp(ai)) in R2. We then connect a wire to the peg at (0, 0) and pull the wire up

from beneath all the other pegs. The path the wire takes is the Newton polygon of f(X).

Lemma 3.3.2. Let f(X) =
∑n

i=0 aiX
i ∈ 1 + XCp[X] and let α1, . . . , αn ∈ Cp be its roots. Let λi =

vp(1/αi). If λ is a slope of the Newton polygon of f(X) with length l, then necessarily l of the λi are

equal to λ.

Proof. The following factorisation of f(X) into its recpirocal roots will be helpful in the proof of the

lemma:

f(X) =

(
1− X

α1

)
. . .

(
1− X

αn

)
Let the αi be numbered such that λ1 ≤ · · · ≤ λn. Suppose there is an r ≥ 1 such that λ1 = · · · = λr <

λr+1. We claim that the Newton polygon of f(X) has first segment joining the points (0, 0) and (r, rλ1).

The coefficients of f(X) are symmetric polynomials in the 1/αi whence it follows that vp(ai) ≥ iλ1.

Hence (i, vp(ai)) lies on or above the line joining the points (0, 0) and (r, rλ1).

Of the r products of the 1/αi, the one with minimal p-adic valuation of rλ1 is 1/(α1 . . . αr), the rest

must include a λi with i > r and thus all others must have p-adic valuation larger than rλ1. Since ar

is the sum of such products, it follows by the ultrametric inequality that vp(ar) = rλ1. By the same

argumentation, we see that, for i > r, vp(ai) > iλ1. Hence the line joining (0, 0) to (r, rλ1) is actually a

segment of the Newton polygon.

Now if λr+1 = · · · = λs < λs+1 for some r + 1 ≤ s ≤ n then we can apply the previous reasoning to

see that the next segment is the line joining the points (r, vp(λr)) and (s, vp(λs)). Continuing this way

we see that the Newton polygon is indeed in the form claimed in the lemma.

Definition 3.3.3. Let f(X) =
∑∞

i=0 aiX
i ∈ 1+XCp[[X]] be a power series (which is not a polynomial).

We define the Newton polygon of f(X) to be the limit of the Newton polygons of the partial sums of

f(X).

We distinguish three different possibilities for the Newton polygon of a power series f(X) =
∑∞

i=0 aiX
i:

1. The Newton polygon of f(X) has infinitely many segments, all of finite length
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2. The Newton polygon of f(X) has finitely many segments with an infinitely long last segment that

contains infinitely many of the points (i, vp(ai))

3. The Newton polygon of f(X) has finitely many segements with an infinitely long last segment that

contains only finitely many of the points (i, vp(ai))

We now prove a series of lemmata which provide us with the tools we need to prove the p-adic Weierstrass

Preparation Theorem.

Lemma 3.3.4. Let f(X) = 1 +
∑∞

i=1 aiX
i ∈ 1 + XCp[[X]]. If b is the supremum of all slopes of the

Newton polygon of f(X) then the radius of convergence of f(X) is pb. In the case that the supremum b

is infinite, f(X) converges everywhere in Cp.

Proof. Suppose that vp(x) > −b. Let c < b be such that vp(x) = −c. Then vp(aix
i) = vp(ai)− ic. Now,

for sufficiently large i, we must have that (i, vp(ai)) lies above (i, ic) and thus vp(aix
i) → ∞ as i → ∞.

Hence f(X) converges at X = x.

Conversely, suppose that ordp(x) < −b. Say vp(x) = −c for c > b. We have vp(aix
i) = vp(ai) − ci.

Now, infinitely many of the (i, vp(ai)) lie below (i, ci) meaning vp(aix
i) is negative for infinitely many i.

Therefore, f(X) can not converge whence f(X) has radius of convergence pb.

Lemma 3.3.5. Let f(X) =
∑∞

i=0 aiX
i ∈ 1 + XCp[[X]]. If c ∈ Cp with vp(c) = λ then the Newton

polygon for f(X/c) is constructed by removing the line y = λx from the Newton polygon of f(X)

Proof. Suppose that f(X/c) =
∑∞

i=0 biX
i. Then vp(bi) = vp(ai/c

i) = vp(ai) − λi. This is equivalent to

taking away the line y = λx from the Newton polygon of f(X).

Lemma 3.3.6. Let f(X) =
∑∞

i=0 aiX
i ∈ 1 +XCp[[X]] with λ1 the first slope of the Newton polygon of

f(X). Suppose c ∈ Cp is such that vp(c) = λ ≤ λ1. Furthermore, suppose that f(X) converges on the

disc D[pλ]. If g(x) = (1 − cX)f(x) then the Newton polygon of g(X) is constructed by adjoining the

Newton polygon of f(X) to that of the polynomial 1− cX. Furthermore, if the last slope of f(X) is λf

then f(X) converges on D[pλf ] if and only if g(X) converges on D[pλf ].

Proof. We first prove the case where c = 1 and λ = 0. Let g(X) =
∑∞

i=0 biX
i. Since g(X) = (1−X)f(X)

we can write bi+1 = ai+1 − ai for all i ≥ 0. Hence

vp(bi+1) ≥ min{vp(ai+1), vp(ai)} (3.2)

Equality holds in the above proposition if and only if vp(ai+1) 6= vp(ai). Now if (i, vp(ai)) is a vertex

of the Newton polygon of f(X) then, necessarily, vp(ai+1) > vp(ai) whence vp(bi+1) = vp(ai). We can

therefore see that the Newton polygon of g(X) has the proposed shape up till at least the last vertex.

Since Equation 3.2 holds, we know that g(X) converges wherever f(X) does. It remains to show that if
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the Newton polygon of f(X) has infinite final slope λf then so does the Newton polygon of g(X). Let

λg be a slope of the Newton polygon of g(X) such that λg > λf . Then for sufficiently large i, the point

(i + 1, vp(ai)) would be below the Newton polygon of g(X). It then follows that vp(bj) > vp(ai) for all

j ≥ i+1. Since ai+1 = bi+1+ai, the properties of the ultrametric inequality imply that vp(ai+1) = vp(ai).

Similarly, vp(ai+1) = vp(ai+1). Continuing in this way, we see that vp(aj) = vp(ai) for all j > i. But this

is a contradiction to the assumption that f(X) converges on D[1]. Hence there can exist no such slope

λg.

To prove the general case, we note that α(X) = f(X/c) and β(X) = (1 − X)α(X) satisfy the

conditions required for the previous special case. The previous reasoning then allows us to determine

the shape of the Newton polygon of β(X). Since g(X) = β(cX) we can apply Lemma 3.3.6 to obtain

the Newton polygon for g(X).

Lemma 3.3.7. Let f(X) =
∑∞

i=0 aiX
i ∈ 1 + XCp[[X]] be a power series whose Newton polygon has

first slope λ1. If the Newton polygon of f(X) has more than one slope then there exists y ∈ Cp satisfying

f(y) = 0 and vp(y) = −λ1.

Proof. We first prove the case where λ1 = 0. In this case, we clearly have that vp(ai) ≥ 0 for all i. Since

the Newton polygon is convex and it has at least two slopes, we must have that vp(ai)→∞ as i→∞.

Let M ≥ 1 be the greatest natural number such that vp(aM ) = 0. Furthermore, let fn(X) denote the

partial sums of f(X). Lemma 3.3.2 implies that, for all n ≥M , fn(X) has exactly M roots x
(n)
1 , . . . , x

(n)
M

such that vp(x
(n)
i ) = 0 for all 1 ≤ i ≤ M . We inductively define a sequence { yn }n≥M by yM = x

(M)
1

and for all n ≥M we choose a root x
(n+1)
i such that |x(n+1)

i − yn|p is minimal. We claim that { yn } is a

Cauchy sequence. Furthermore, the limit of this sequence, say y, will satisfy f(y) = 0 as desired.

For all n ≥M let Rn be the collection of all roots of fn(X) (including all repeated roots). We have

that

|fn+1(yn)− fn(yn)|p = |fn+1(yn)|p

=
∏

x∈Rn+1

∣∣∣1− yn
x

∣∣∣
p

Now if x ∈ Rn+1 is a zero that is not equal to one of the x
(n+1)
i then necessarily vp(x) < 0. By the

ultrametric inequality we have

vp

(
1− yn

x

)
≥ min

{
vp(1), vp

(yn
x

)}
= min{0, vp(yn)− vp(x)} = 0
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with equality holding throughout. Hence

|fn+1(yn)− fn(yn)|p ≥
M∏
i=1

∣∣∣∣1− yn

x
yn+1

i

∣∣∣∣
p

=

M∏
i=1

|x(n+1)
i − yn|p

≥ |yn+1 − yn|Mp

where in the last line we have used the fact that we chose yn+1 to minimise |x(n+1)
i − yn|p. Rewriting

this, we observe that

|yn+1 − yn|Mp ≤ |fn+1(yn)− fn(yn)|p = |an+1y
n+1
n |p = |an+1|p

By hypothesis, |an+1|p → 0 as n → ∞. Hence { yn } is Cauchy. Denote its limit by y ∈ Cp. We thus

have that vp(y) = 0 = −λ1 as proposed by the lemma.

To show that y satisfies f(y) = 0, we first note that f(y) = limn→∞ fn(y). Furthermore,

|fn(y)|p = |fn(y)− fn(yn)|p =

∣∣∣∣∣
n∑
i=1

ai(y
i − yin)

∣∣∣∣∣
p

= |y − yn|p

∣∣∣∣∣
n∑
i=1

ai
yi − yin
y − yn

∣∣∣∣∣
p

We now observe that |ai|p ≤ 1 and that∣∣∣∣yi − yiny − yn

∣∣∣∣
p

= |yi−1 + yi−2yn + · · ·+ yi−1n |p ≤ 1

Hence |fn(y)|p ≤ |y − yn|p whence f(y) = limn→∞ fn(y) = 0. This completes the proof for the case

where λ1 = 0.

To prove the lemma in full generality, let c ∈ Cp be any number such that vp(c) = λ1. Let

α(X) = f(X/c). Then the Newton polygon of α(X) has first slope 0 and we may apply the previ-

ous argumentation to see that there exists x0 ∈ Cp α(x0) = 0 and vp(x0) = 0. Now take x = x0/c. Then

vp(x) = −λ1 and f(x) = f(x0/c) = α(x0) = 0.

Lemma 3.3.8. Let f(X) = 1 +
∑∞

i=1 aiX
i ∈ 1 + XCp[[X]] and α ∈ Cp such that f(α) = 0. Let

β(X) = 1 +
∑∞

i=1 biX
i ∈ 1 +XCp[[X]] be such that

β(X) = f(X)

(
1 +

X

α
+
X2

α2
+ . . .

)
Note that this is equivalent to dividing f(X) by the polynomial 1 −X/α. Then β(X) converges on the

disc D[|α|p].

Proof. Let fn(X) denote the nth partial sum of f(X). Equating coefficents we see that

bi =
1

αi
+

a1
αi−1

+ · · ·+ ai−1
α

+ ai

and thus biα
i = fi(α). It then follows that limi→∞ |biαi|p = limi→∞ |fi(α)|p = 0.

Theorem 3.3.9 (Weierstrass Preparation Theorem). Let f(X) =
∑∞

i=0 aiX
i ∈ 1+XCp[[X]] be a power
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series converging on a disc D[pλ]. If the Newton polygon of f(X) does not have an infinitely long last

slope of λ then let N denote the total length of slopes less than or equal to λ. Otherwise, let N be

the greatest i such that (i, vp(ai)) lies on the last segment. Then there exists a degree N polynomial

h(X) ∈ 1 + XCp[X] and a power series g(X) = 1 +
∑∞

i=1 aiX
i ∈ 1 + XCp[[X]] which converges and is

non-vanishing on D[pλ] such that

h(X) = f(X)g(X)

Furthermore, this polynomial is unique and its Newton polygon coincides with that of f(X) up to

(N, vp(aN )).

Proof. We prove the theorem by induction on N . Suppose that N = 0. This is equivalent to showing

that the inverse power series g(X) of f(X) is convergent and non-vanishing on D[pλ]. As in the proof

of the previous lemmata, we may reduce to the case where λ = 0 without loss of generality.

We have that vp(ai) > 0 and vp(ai)→∞ as i→∞; we need to show that vp(bi) > 0 and vp(bi)→∞

as i→∞. Equating coefficients, we see that

bi = −(bi−1a1 + bi−2a2 + · · ·+ b1ai−1 + ai)

for all i ≥ 0. By induction, it is clear that vp(bi) > 0 for all i.

Now fix some ε > 0 and choose n ∈ N so that if i > n then vp(ai) > ε (we can always do this since

vp(ai)→∞). Define

δ = min
1≤i≤m

{vp(ai)}

We shall show, by induction on m, that i > mn implies vp(bi) > min{ε,mδ}. The claim is clearly true

for m = 0 so suppose it is true for arbitrary m− 1 and that i > mn. Again, we have

bi = −(bi−1a1 + bi−2a2 + · · ·+ bi−nan + bi−(n+1)an+1 + · · ·+ b1ai−1 + ai)

If j > n, we have that vp(bi−jaj) ≥ vp(aj) > ε. Conversely if j ≤ n then vp(bi−jaj) ≥ vp(bi−j) + δ. Now,

i − j > (m − 1)n and thus, by the induction hypothesis, we have vp(bi−jaj) ≥ min{ε, (m − 1)δ} + δ.

Expanding this out, we see that all terms in the expression for bi have p-adic valuation greater than

min{ε,mδ} as required. Now, taking m→∞, we see that vp(bi)→∞ and thus the theorem is true for

N = 0.

Suppose that the theorem is true for arbitrary N−1. Let λ1 ≤ λ denote the first slope of the Newton

polygon of f(X). Lemma 3.3.7 guarantees the existence of a root of f(X), say α, such that vp(α) = −λ1.

Define

fα(X) = f(X)

(
1 +

X

α
+
X2

α2
+ . . .

)
Lemma 3.3.8 implies that fα(X) converges on D[pλ1 ]. Denote c = 1/α so as to write f(X) = (1 −
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cX)fα(X). Let λ′1 be the first slope of the Newton polygon of fα(X). If λ′1 < λ1 then Lemma 3.3.7

would imply that fα(X) would have a root with p-adic valuation −λ′1. But then so would f(X) which is

a contradiction. Hence λ′1 ≥ λ1. Now, Lemma 3.3.6 implies that fα(X) has the same Newton polygon as

f(X) except for the segment joining (0, 0) to (1, λ1). Now, since f(X) converges on D[pλ], this lemma

also implies that fα(X) converges on the same disc.

We can now apply the induction hypothesis to fα(X) to find a polynomial hα(X) ∈ 1 + XCp[[X]]

of degree N − 1 and a power series g(X) ∈ 1 +XCp[[X]] which converges and is nonzero on D[pλ] such

that

hα(X) = fα(X)g(X)

Multiplying both sides by 1− cX and denoting h(X) = (1− cX)hα(X) we have

h(X) = f(X)g(X)

as required.

To prove the uniqueness of h(X), suppose that h′(X) ∈ 1 +XCp[X] is another polynomial of degree

N such that h′(X) = f(X)g′(X) where g′(X) converges and is non-zero on D[pλ]. We have

h′(X)g(X) = f(X)g(X)g′(X) = h(X)g′(X)

It therefore suffices to prove that h′(X)g(X) = h(X)g′(X) implies that h′(X) and h(X) have the same

roots with the same multiplicities. We prove the claim by induction on N . If N = 1, then h(X) and

h′(X) are linear and hence h(x) = 0 if and only if h′(x) = 0 for some x ∈ D[pλ]. Suppose that N > 1.

We may assume that vp(α) = −λ for some root α of h(X). α must also be a root of h′(X) so we may

divide both sides of h′(X)g(X) = h(X)g′(X) by 1 − X/α. Appealing to Lemma 3.3.8, the two sides

converge on D[|α|p] and thus we may apply the induction hypothesis to reduce to the case N − 1 and

we are done.

Corollary 3.3.10. Let f(X) ∈ 1 + XCp[[X]] be a power series. If the Newton polygon of f(X) has a

finite slope λ of length N then there exists N (not necessarily distinct) x ∈ Cp such that f(x) = 0 and

vp(x) = −λ.

Corollary 3.3.11. Let f(X) ∈ Cp[[X]] with f(0) = a where a is non-zero. If f(X) converges everywhere

in Cp then we can write

f(X) = a

∞∏
i=1

(
1− X

αi

)
where the αi form a countable set which we may refer to as the roots of f(X).

Proof. Clearly the result holds if f(X) is a polynomial. Hence we may assume that f is a power series that

has infinitely many non-zero terms. Let f(X) = f(x)/a. Since f(X) converges everywhere, Lemma 3.3.4
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implies that the slopes of the Newton polygons are unbounded from above. Hence for any slope λ, we

can apply the Weierstrass Preparation Theorem and write f(X) = hλ(X)gλ(X) with gλ(X) convergent

and non-vanishing on D[pλ]. We claim that the coefficients of hλ(X) converge to the coefficients of f(X)

as λ→∞. Equivalently, it suffices to show that gλ(X)→ 1 as λ→∞. First write

gλ(X) = 1 +
∑
i=1

bλiX
i

Let λg be the first slope of the Newton polygon of g(X). Suppose that the Newton polygon of gλ(X)

contains a point (i, vp(b
λ
i )). Since gλ(X) does not vanish on D[pλ], Lemma 3.3.7 implies that λg > λ. If

there are only finitely many λ such that the Newton polygon of gλ(X) does not touch a point then we

can pass to the limit λ→∞ and we see that bλi → 0 for all i.

If there are infinitely many λ for which the Newton polygon of gλ(X) does not contain a point then

all the points (i, bλi ) lie above the first slope λg. Since gλ(X) converges on D[pλ], Lemma 3.3.4 implies

that the slope of the Newton polygon is at least λ. We thus see that, in this case, the coefficients bλi also

go to 0.

This is a rather remarkable result of independent interest. Entire power series over C do not enjoy

such a property - such power series may have an exponential factor in their factorisation.



Chapter 4

Dwork’s proof of the rationality of the

zeta-function

We are finally ready to tackle Dwork’s proof. Dwork first shows that the zeta-function defines a p-adic

meromorphic function on Cp. To this end, he proves a trace formula for certain endomorphisms of

Cp[[X1, . . . , Xn]]. One particular endomorphism to which this trace formula applies is obtained from

a so-called ‘lifting’ of a character to a function on Cp. Armed with these tools, Dwork then applies

a criterion for rationality of a power series due to Borel in order to conclude that the zeta-function is

rational.

Before we start this program, we state and prove a few useful and interesting properties of the

zeta-function itself.

4.1 Properties of the zeta-function

Lemma 4.1.1. Let Hf be an affine hypersurface defined over the finite field Fq. Then the zeta-function

Z(Hf/Fq;T ) has integral coefficients; in particular, its constant term is 1.

Proof. Let X = (x1, . . . , xn) be a Fqs0 -point of Hf (where s0 is the least such s where all the xi lie in

Fqs0 ). Let x1j , . . . , xij be the conjugates of the xi over Fq for 1 ≤ j ≤ s0. Let Pj = (x1j , . . . , xnj) be the

conjugates of X. Then, clearly, the Xj must be distinct. Indeed, if they weren’t, then all the xi would

be fixed by an Fq-automorphism σ of Fqs0 they would thus be in a smaller finite field, contradiciting the

minimality of s0.

Now, each Xj is an Fqs-point whenever s0|s and thus Xj contributes s0 to Ns0 , N2s0 , N3s0 , . . . . We

can thus write down their contributions to the zeta-function as follows:

exp

( ∞∑
i=1

s0T
is0

is0

)
= exp(− log(1− T s0)) =

1

1− T s0
=

∞∑
i=0

T is0

The series on the right hand side clearly has positive integer coefficients. The zeta-function is now a

product of similar series meaning the zeta-function itself must have positive integer coefficients. It also

follows that the constant term of Z(Hf/Fq;T ) is 1.

Lemma 4.1.2. Let Hf be an affine hypersurface defined over a finite field Fq. Then the coefficient of T i

in the zeta-function Z(Hf/Fq;T ) is bounded above by qni where n is the dimension of the affine space.

34
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In particular, Z(Hf/Fq;T ) defines a holomorphic function on the disc of radius q−n in C.

Proof. The maximum possible value for Ns is the cardinality of n-dimensional affine space defined over

Fqs , namely qns. Hence,

exp

( ∞∑
s=1

NsT
s

s

)
≤ exp

( ∞∑
s=1

qnsT s

s

)
= exp(− log(1− qnT )) =

1

1− qnT
=

∞∑
i=0

qniT i

We end this short section with a result that makes it clear why we chose the zeta-function in the

form that it is.1

A useful construction is the notion of a global zeta-function. Consider a polynomial f(x1, . . . , xn) ∈

Z[X1, . . . , Xn]. Reducing the coefficients modulo p, we may obtain affine hypersurfaces Hf,p for all primes

p. We then define the global zeta-function of f to be

Z(f, x) =
∏
p

Z(Hf,p, p
−x)

Now reduce to the case of 0-dimensional affine space and let f be the zero polynomial. Then

Z(0, x) =
∏
p

Z(H0,p, p
−x) =

∏
p

[
exp

( ∞∑
s=1

(p−x)s

s

)]
=
∏
p

exp(− log(1− p−x))

=
∏
p

1

1− p−x

and we recover the Euler product for the Riemann zeta-function. It is thus clear that our choice for the

zeta-function of an affine hypersurface is natural.

4.2 Borel’s Theorem

Theorem 4.2.1. Let K be a field and F (T ) =
∑∞

i=0 aiT
i ∈ K[[T ]] be a power series. Given m, s ≥ 0

define the matrix As,m = (as+i+j)0≤i,j≤m. In other words,

As,m =



as as+1 as+2 · · · as+m

as+1 as+2 as+3 · · · as+m+1

as+2 as+3 as+4 · · · as+m+2

...
...

... · · ·
...

as+m as+m+1 as+m+2 · · · as+2m


Let Ns,m = detAs,m. Then F (T ) is a quotient of two polynomials P (T ), Q(T ) ∈ K[T ] if and only if

there exist integers m,S ≥ 0 such that NS,m = 0 for all s ≥ S.

Proof. First suppose that F (T ) is a quotient of two polynomials P (T ), Q(T ) ∈ K[T ]. Denote P (T ) =

1although this is certainly not the only reason
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∑M
i=0 biT

i and Q(T ) =
∑N

i=0 ciT
i. By hypothesis, we have F (T )Q(T ) = P (T ). Equating coefficients of

T i with i > max{M,N} in this equation yields

N∑
j=0

ai−N+jcN−j = 0

Hence if s is taken to be sufficiently large, we have the following equations for i = s+N, s+N+1, . . . , s+

2N :

ascN + as+1cM−1 + · · ·+ as+Nc0 = 0

as+1cN + as+2cN−1 + · · ·+ as+N+1c0 = 0

...

as+NcN + as+N+1cN−1 + · · ·+ as+2Nc0 = 0

We can rewrite this as a matrix equation: As,N (cN , . . . , c0)
T = ~0. This clearly implies that Ns,N = 0 for

s sufficiently large.

For the opposite implication, assume that there exists S and m such that Ns,m = 0 for all s ≥ S and

m is the minimal such integer that this holds. We claim that Ns,m−1 6= 0 for all s ≥ S.

To arrive at a contradiction, suppose that Ns,m−1 = 0 for all s ≥ S. This implies that there exists a

linear combination of the first m rows of As,m that vanishes in all but possibly the last column. Label

the rows r1, . . . , rm−1. Let i0 ∈ N be such that ri0 is the first row in the above linear combination with

non-zero coefficient. Then we may write

ri0 = α1ri0+1 + α2ri0+2 + · · ·+ αm−i0−1rm−1

except for possibly in the last column. Replacing ri0 by ri0 − (α1ri0+1 + · · ·+αm−i0−1rm−1) we have two

cases, i0 = 0 and i0 > 0.

In the first case As,m takes the form

as as+1 · · · as+m

as+1 as+2 · · · as+m+1

...
... · · ·

...

0 0 · · · α

...
... · · ·

...

as+m as+m+1 · · · as+2m


for some α ∈ K. The inner block has determinant Ns+1,m−1 = 0.
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In the latter case, As,m takes the form
0 0 · · · α

as+1 as+2 . . . as+m+1

...
... · · ·

...

as+m as+m+1 · · · as+2m


It is clear that both inner blocks have determinant Ns+1,m−1. By hypothesis, Ns,m = 0 so either the

bottom left block has determinant 0 or either α = 0 in which case we also have Ns+1,m−1 = 0. By

induction, we see that Nt,m−1 = 0 for all t ≥ s. But this contradicts the minimality of m. Hence we

must have that Ns,m−1 6= 0 for all s ≥ S.

This implies that there exists a vanishing linear combination of the rows of As,m where the coefficient

of the last row is non-zero. Hence, the last row of As,m is a linear combination of all the previous m

rows. Therefore if γ0, . . . , γm ∈ K satisfy
as as+1 . . . as+m
...

... · · ·
...

as+m+1 as+m · · · as+2m−1




γm
...

γ0

 = ~0

then we also have asγm + . . . as+mγ0 = 0. By induction, this applies to all s ≥ S. But this implies that(
m∑
i=0

γiX
i

)( ∞∑
i=1

aiX
i

)
is a polynomial and we are done.

In order to apply Borel’s Theorem to the zeta-function, we need to show that the zeta-function

defines a meromorphic function on Cp. The next two sections will be concerned with the proof of this

fact.

4.3 Endomorphisms of Cp[[X1, . . . , Xn]]

The goal of this section is to prove the so-called Dwork’s Trace Formula which is the first of two results

that we need in order to prove the p-adic meromorphicity of the zeta-function.

Throughout this section, we shall set R = Cp[[X1, . . . , Xn]]. Let

U = { (x1, . . . , xn) | xi ∈ Z, xi ≥ 0 }

If Xu1
1 . . . Xun

n ∈ R is a monomial then, for brevity, we shall write it in the compact form Xu where

u = (u1, . . . , un). The standard arithmetic operations on u ∈ U , such as multiplication or exponentiation

by an integer, shall be given by applying the operation component-wise. If u is an index (for a summation

for example) and it is acted upon by an operation that sends it outside U then we set the indexed object

to zero.
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Let G ∈ R be a power series. By µG we shall mean the endomorphism of R given by multiplication

of G:

µG : R→ R

r 7→ Gr

Let q be a positive integer. By φq we shall mean the endomorphism of R given by

φq : R→ R∑
u∈U

auX
u 7→

∑
u∈U

aquX
u

In other words, if u ∈ U is not divisible by q then the corresponding term of the power series auX
u

vanishes under the action of φq. If u is divisible by q then φq replaces Xu by Xu/q.

Finally, we denote the composition of these two endomorphisms by Ψq,G = φq ◦ µG. Suppose that

G =
∑

w∈U γwX
w. Then Ψq,G acts on a monomial Xu as follows:

Ψq,G(Xu) = φq

(∑
w∈U

γwX
w+u

)
=
∑
w∈U

γqw−uX
w

Lemma 4.3.1. Let G =
∑

w∈U γwX
w ∈ R. If Gq(X) = G(Xq) then

µG ◦ φq = φq ◦ µGq = Ψq,Gq

Proof. We have that

µG ◦ φq(Xu) =

 0 if q6 | u

GXu/q if q|u

In the case where q|u, this is the same as∑
w∈U

γwX
w+u/q =

∑
w∈U

γw−u/qX
w (4.1)

On the other hand, we have

φq ◦ µGq(Xu) = φq

(∑
w∈U

γw∈UX
qw+u

)
=
∑
w∈U

γqwX
qw+u =

∑
w∈U

γw−u/qX
w

If q6 | u then this is simply 0. If not then we retrieve Equation 4.1. Finally,

Ψq,Gq(X
u) = φq ◦ µGq(Xu) = φq

(∑
w∈U

γwX
qw+u

)
=
∑
w∈U

γqwX
qw+u =

∑
w∈U

γw−u/qX
w

as desired.

Definition 4.3.2. We define the set of overconvergent power series to be

R0 =

{
G =

∑
w∈U

γwX
w ∈ R

∣∣∣∣∣ ∃ ε > 0 such that vp(γw) ≥ ε|w| ∀w ∈ U

}
where |w| is understood to be the sum of the components of w.
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Lemma 4.3.3. R0 is closed under multiplication and the map G 7→ Gq.

Proof. Let f(X) =
∑

v∈U βvX
v and g(X) =

∑
w∈U γwX

w be power series in R0. Then

f(X)g(X) =
∑
z∈U

azX
z

where az =
∑

m+n=z βmγn. Now

vp(az) ≥ min
m+n=z

vp(βmγn) = min
m+n=z

[vp(βm) + vp(γn)]

By hypothesis, there exist ε, δ > 0 such that for all m,n ∈ U we have vp(βm) ≥ ε|m| and vp(γn) ≥ δ|n|.

Furthermore if m+ n = z then |m|+ |n| = |z|. Hence

vp(az) ≥ min
m+n=z

[ε|m|+ δ|n|] ≥ min{δ, ε}|z|

It therefore follows that f(X)g(X) ∈ R0.

For the second part of the lemma, let G(X) =
∑

w∈U γuX
u. We have

Gq(X) =
∑
z∈U

γzX
qz

If γ′zX
z is a term in Gq then γ′z is 0 unless q|z. In that case, we have z = qw where w is the power of X

in a monomial of the expansion of g(X). Then there exists a ε > 0 such that

vp(γ
′
z) = vp(γw) ≥ ε|w| = ε

q
|qw| = ε

q
|z|

and thus Gq ∈ R0.

Lemma 4.3.4. If µn(Cp) is the set of all nth roots of unity in Cp then

∑
ζ∈µn(Cp)

ζa =

 n if n|a

0 if n6 | a

Proof. Suppose first that n divides a. Then any nth root of unity to the power of a is 1. Since there are

exactly n nth roots of unity, the formula follows.

Now assume that n6 | a and that n and a are coprime. Then the map ζ 7→ ζa is an automorphism of

µn(Cp) whence ∑
ζ∈µn(Cp)

ζa =
∑

ζ∈µn(Cp)

ζ

Recall that the nth roots of unity are the roots of the polynomial Xn − 1. Clearly, this factors as

Xn − 1 =
∏
ζ∈µn(Cp)X − ζ. Now, the coefficient of the Xn−1 term on the left hand side is 0 and on the

right hand side it is simply the negative of the sum of the elements of µn(Cp). Hence, in this case, the

original sum is 0.

Finally, suppose that 1 < d = gcd(n, a) < n. Then we obtain d sums of n/d roots of unity which also

sum to 0 and we are done.
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Recall that given an n-dimensional vector space V and a linear map A : V → V , we define the trace

of A to be

Tr(A) =

n∑
i=1

Aii

Now if V is an infinite dimensional vector space over a field equipped with an absolute value | · | and A

is an endomorphism of V then we can also define the trace of A provided that the sum

Tr(A) =
∞∑
i=1

Aii

converges with respect to | · |.2

Proposition 4.3.5 (Dwork’s Trace Formula). Let G ∈ R0 be an overconvergent power series, q a positive

integer and Ψ = Ψq,G. Let µqs−1 denote the set of all Cp n-tuples consisting of (qs − 1)th roots of unity.

Then Tr(Ψs) converges for all s ≥ 1 and

(qs − 1)nTr(Ψs) =
∑

x∈µqs−1

G(x)G(xq)G(xq
2
) . . . (4.2)

Proof. We prove the lemma by induction on s. Suppose that s = 1 and G(X) =
∑

w∈U γwX
w. By

definition we have Ψ(Xu) =
∑

w∈U γqw−u. The elements that contribute to the trace are those when

v = u and so

Tr(Ψ) =
∑
u∈U

γ(q−1)u

Since G ∈ R0, the above sum is convergent and thus the trace is well-defined.

We now shift our attention to the right hand side of Equation 4.2. If x,w ∈ U , let xi and wi denote

their ith coordinates respectively. Then by Lemma 4.3.4 we have

∑
xq−1
i =1

xwii =

 q − 1 if (q − 1)|wi

0 if (q − 1)6 |wi

whence it follows that

∑
x∈µqs−1

xw =

n∏
i=1

 ∑
xq−1
i =1

xwii

 =

 (q − 1)n if (q − 1)|w

0 if (q − 1)6 |w

We now see that ∑
x∈µqs−1

G(x) =
∑
w∈U

γw
∑

x∈µqs−1

xw = (q − 1)n
∑
u∈U

g(q−1)u = (q − 1)nTr(Ψ)

which proves the lemma in the case s = 1.

2one must be careful to make sure that such a construction is independent of the choice of basis for V . Indeed, the
trace is independent of such a choice for the finite case by elementary linear algebra. For the infinite dimensional case, we
may simply pass to the limit on the finite dimensional case.
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Now assume that s > 1. By the definition of Ψ and Lemma 4.3.1 we have

Ψs = φq ◦ µG ◦ φq ◦ µG ◦Ψs−2

= φq ◦ φq ◦ µGq ◦ µG ◦Ψs−2

= φq2 ◦ µGGq ◦Ψs−2

...

= φqs ◦ µGGq ...Gqs−1 = Ψqs,GGq ...Gqs−1

By Lemma 4.3.3, the power series GGq . . . Gqs−1 is in R0. Hence the case where s > 1 reduces to the

basis case and we are done.

Dwork’s Trace Formula is essentially the result that will allow us to ‘lift’ the problem of the zeta-

function over finite fields to a problem of p-adic analysis. This, along with the character lifting introduced

in the next section, are the most fundamental parts of Dwork’s proof.

Proposition 4.3.6. Let G ∈ R0 be an overconvergent power series, q a positive integer and Ψ = Ψq,G.

Then the power series det(1−ΨT ) ∈ Cp[[T ]] is a well-defined entire power series and

det(1−ΨT ) = expp

(
−
∞∑
s=1

Tr(Ψs)T s

s

)

Proof. Let G(X) =
∑

w∈U γwX
w ∈ R0. We first recall the definition of the determinant in terms of

permutations:

det(1−ΨT ) =
∞∑
b=0

bnT
n

where

bn = (−1)n
∑

u1...un∈U
σ∈Sn

sgn(σ)
n∏
i=1

Ψu1,uσ(i)

Here Ψu,w means the (u,w)th entry of the (infinite) matrix for the endomorphism Ψ. We can read such

entries off from the definition Ψ(Xu) =
∑

w∈U γqw−uX
w.

Since G ∈ R0, we can always find an ε > 0 such that vp(γw) ≥ ε|w| for all w ∈ U . Thus

vp(γquσ(1)−u1 · · · γquσ(j)−un) ≥ ε(|quσ(1) − u1|+ · · ·+ |quσ(n) − un|)

≥ ε

(
n∑
i=1

q|uσ(i)| −
n∑
i=1

|ui|

)

= ε(q − 1)
n∑
i=1

|ui|

From this we clearly see that vp(bn) → ∞ as n → ∞ whence the determinant is well-defined. Further-
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more, (1/n)vp(bn)→∞ as n→∞. This implies that, as n→∞,

lim
n→∞

|bn|1/np → 0

Hence the determinant has an infinite radius of convergence.

To prove the equation given in the proposition, we first consider the case where A is an endomorphism

of an n-dimensional vector space over Cp. From elementary linear algebra, we know that the determinant

and the trace of such a mapping is invariant under a change of basis. Since Cp is algebraically closed, we

can always find a change of basis so that A, with respect to the new basis, is upper triangular. Hence,

without loss of generality, we may assume that A is upper triangular. Then

det(1−AT ) =

n∏
i=1

(1−Ai,iT )

On the other hand, we have

Tr(As) =

n∑
i=1

(Ai,i)
s

Hence

expp

(
−
∞∑
s=1

n∑
i=1

(Ai,i)
sT s

s

)
=

n∏
i=1

expp

(
−
∞∑
s=1

(Ai,iT )

s

)

=
n∏
i=1

expp
(
logp(1−Ai,iT

)
=

n∏
i=1

(1−Ai,iT ) = det(1−AT )

Now if Ψ is an endomorphism acting on an infinite dimensional vector space over Cp, we can easily pass

to the limit n→∞ in the above to arrive at the same identity for Ψ.

4.4 Lifting of Cp-valued characters

Having proved Dwork’s Trace Formula for the endomorphism Ψ and discovered some of its properties,

we now look towards finding an overconvergent power series with which we can use these results. This

power series will be the second key result we need in order to prove that the zeta-function is p-adic

meromorphic.

Definition 4.4.1. Let G be a finite group and K a field. A K-valued character of G is a homomorph-

ism ϕ : G 7→ K×.

It is immediate from Lagrange’s Theorem and the definition of a character that the image of ϕ is

necessarily a subset of the roots of unity in K×.

Let L/K be a field extension and α ∈ L with [K(α) : K] = m and [L : K(α)] = n. Recall that we



4.4. Lifting of Cp-valued characters 43

define the trace of α from L to K to be

TrL/K(α) = n

m∑
i=1

αi

where the α = α1, . . . , αm are the conjugates of α over K. Furthermore, if L/K is Galois and G =

Gal(L/K) then

TrL/K(α) =
∑
σ∈G

σ(α)

Proposition 4.4.2. Let ω ∈ Cp be a pth root of unity. Then

ϕ : Fq → (Cp)×

a 7→ ωTrFq/Fp (a)

is a well-defined Cp-valued character of the additive group of Fq. Here, exponentiation by t = TrFq/Fp(a)

is to be understood as exponentiation by the least positive residue of t.

Proof. It is an elementary result of the theory of finite fields that Fq/Fp is Galois. Let G = Gal(Fq/Fp).

Then G is generated by the Fp-automorphism x 7→ xp - the so-called Frobenius automorphism. We have

TrFq/Fp(a)p =

(∑
σ∈G

σ(a)

)p
=
∑
σ∈G

σ(a)p =
∑
σ∈G

σ(a) = TrFq/Fp(a)

Since each σ ∈ G is a power of the Frobenius automorphism, we see that TrFq/Fp(a) is fixed by all

elements of G. Hence TrFq/Fp(a) ∈ Fp.

It is easy to see that the trace is additive. Indeed,

TrFq/Fp(a+ b) =
∑
σ∈G

σ(a+ b) =
∑
σ∈G

σ(a) + σ(b) = TrFq/Fp(a) + TrFq/Fp(b)

where we have used the fact that the Frobenius automorphism and all its powers are additive in charac-

teristic p. ϕ is therefore a character of the additive group of Fq.

Let a ∈ Fq for some prime power q = ps. Recall that there exists a unique Teichmüller representative

of a given by τs(a) (the Teichmüller lift) in an unramified extension K of Qp generated by a primitive

(ps − 1)th root of unity. τs(a) satisfies τs(a)p
s

= τs(a) and τs(a) ≡ a (mod pOK). K/Qp is Galois since

K is the splitting field for the qth cyclotomic polynomial over Qp. Letting G = Gal(K/Qp) we have

TrK/Qp(τs(a)) =
∑
σ∈G

σ(τs(a))

It then follows that

TrK/Qp(τs(a)) ≡ TrFq/Fp(a) (mod pOK)
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Hence given any pth root of unity ω, we have

ωTrK/Qp (τs(a)) = ωTrFq/Fp (τs(a))

We seek a complex p-adic power series Θ(T ) ∈ Cp[[T ]] satisfying Θ(τs(a)) = ωa. If we can find such

a power series, then we can recover the trace character as follows:

Θ(τs(a))Θ(τs(a)p) . . .Θ(τs(a)p
s−1

) = ωTrFq/Fp (a)

We shall refer to Θ as a lifting of the character ϕ to a function on Cp. In order to construct such a

lifting, we shall use the power series we constructed after introducing Dwork’s Lemma.

Lemma 4.4.3. Let ω ∈ Cp be a pth root of unity. Then |ω − 1|p = p−1/(p−1).

Proof. Observe that ω satisfies the pth cyclotomic polynomial over Qp:

Φ(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 + · · ·+X + 1

We claim that Φ(X + 1) is the minimal polynomial of ω − 1 over Qp. Indeed, Φ(ω − 1 + 1) = Φ(ω) = 0

so it suffices to show that Φ(X + 1) is irreducible over Qp. We have

Φ(X + 1) =
(X + 1)p − 1

(X + 1)− 1
=

(X + 1)p − 1

X
≡ Xp−1 (mod p)

Hence all coefficients except the leading coefficient of Φ(X+1) is divisible by p. Furthermore, Φ(0+1) =

Φ(1) = p which is not divisible by p2. Hence by the Eisenstein irreducibility criterion, Φ(X + 1) is

irreducible. Now the p-adic absolute value for ω is given in terms of the algebraic norm for ω. Calculating

this, we have NQp(ω−1)/Qp(ω − 1) = Φ(1) = p. We thus see that |ω − 1|p = p−1/(p−1).

Theorem 4.4.4. Let ω be a pth root of unity and set λ = ω − 1. Suppose that ϕ is the character

ϕ : Fps → (Cp)×

a 7→ ω
TrFps/Fp (a)

Then

Θ(T ) = F (T, λ) = (1 + λ)T (1 + λp)(T
P−T )/p(1 + λp

2
)(T

p2−T p)/p2 . . .

is a lifting of ϕ to a function on Cp.

Proof. Recall that the function F (X,Y ) in the theorem’s hypothesis was shown to have coefficients in

Zp by Dwork’s Lemma. If we consider Y to be fixed we have

F (X,Y ) =
∞∑
n=0

Xn

( ∞∑
m=n

am,nY
m

)
for some constants am,n. Substituting T and λ we see that F (T, λ) =

∑∞
n=0 anT

n with an =
∑∞

m=n am,nλ
m.
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We have that

vp(an) = vp

( ∞∑
m=n

am,nλ
m

)
≥ vp(λn) = vp((ω − 1)n) =

n

p− 1

where we have used Lemma 4.4.3 to calculate the p-adic valuation of ω − 1. Hence if we take Θ(T ) =

F (T, λ), we see that Θ(T ) ∈ Cp[[T ]] converges (at least) on the disc D(p−1/(p−1)). We now claim that if

τ = τs(a) ∈ Cp is the Teichmüller representative of a ∈ Fps in Cp then

ω
TrFps/Fp (a) = (1 + λ)τ+τ

p+···+τps−1

= Θ(τ)Θ(τp) . . .Θ(τp
s−1

)

We have

ps−1∏
i=1

Θ(τ i) =

ps−1∏
i=1

(1 + λ)τ
i
(1 + λp)(τ

pi−τ i)/p . . .

Simplifying on the right hand side yields

ps−1∏
i=1

Θ(τ i) = (1 + λ)τ+τ
p+...τp

s−1

(1 + λp)(τ
ps−τ)/p(1 + λp

2
)(τ

ps+1−τp)/p2 . . .

But τp
s

= τ and we are left with

ps−1∏
i=1

Θ(τ i) = (1 + λ)τ+τ
p+···+τps−1

= ω
TrFps/Fp (a)

as desired.

Now that we have constructed the lifting, we show that it gives rise to an overconvergent power series

and thus we can apply the facts from the previous section.

Proposition 4.4.5. Let w ∈ U, a ∈ D(1). Then Θ(aXw) is an overconvergent power series.

Proof. The proof of Theorem 4.4.4 implies that Θ(T ) =
∑∞

i=0 biT
i with vp(bi) ≥ i/(p− 1). Now,

Θ(aXw1
1 . . . Xwn

n ) =
∞∑
i=0

bia
iXiw1

1 . . . Xiwn
n

Then vp(bia
i) ≥ vp(bi) ≥ i/(p − 1) = i|w|/(|w|(p − 1)). Taking ε = 1/(|w|(p − 1)) leaves us with

vp(bia
i) ≥ ε|w| whence Θ(aXw) ∈ R0.

4.5 Meromorphicity of the zeta-function

We now put our two results together, namely Dwork’s Trace Formula applied to the series Θ, to conclude

that the zeta-function is p-adic meromorphic. We begin with a couple of lemmata:

Lemma 4.5.1. Let

ϕ : Fq → (Cp)×
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be a non-trivial Cp-valued character of the additive group of Fq. Then∑
x∈Fq

ϕ(x) = 0

Proof. Let x0 ∈ Fq be such that ϕ(x0) 6= 1. Such an x0 exists since ϕ is non-trivial. Now consider the

change of variables x 7→ x+ x0. We have∑
x∈Fq

ϕ(x) =
∑
x∈Fq

ϕ(x+ x0) = ϕ(x0)
∑
x∈Fq

ϕ(x)

but ϕ(x0) 6= 1 so we must have that the summation equals 0.

Lemma 4.5.2. Let ω be a pth root of unity in Cp. Consider the Cp-valued character

ϕ : Fq → (Cp)×

x 7→ ωTrFq/Fp (x)

Then

∑
x∈Fq

ϕ(xu) =

 0 if u ∈ (Fqs)×

q if u = 0

Proof. If u = 0 then the lemma is trivial. If u 6= 0 then we may consider the proof of the previous lemma

with the change of variables xu 7→ xu+ x0.

Proposition 4.5.3. Let Hf be an affine hypersurface defined over a finite field Fq. Then the zeta-

function Z(Hf/Fq;T ) is p-adic meromorphic.

Proof. We prove the proposition by induction on n, the dimension of the affine space that Hf is defined

on. If n = 0 then any hypersurface over Fq consists of just a single point and its zeta function is given

by

Z(Hf/Fq;T ) = exp

( ∞∑
s=1

T s

s

)
= exp(− log(1− T )) =

1

1− T

which is indeed a p-adic meromorphic function. Now suppose that the proposition holds true for all

natural numbers less than or equal to n− 1. Define

N ′s = | { (x1, . . . , xn) ∈ Fqs | f(x1, . . . , xn) = 0,∀ 1 ≤ i ≤ n, xi 6= 0 } |

= | { (x1, . . . , xn) ∈ Fqs | f(x1, . . . , xn) = 0,∀ 1 ≤ i ≤ n, xq
s−1
i = 1 } |

We claim that the rationality of

Z ′(Hf/Fq;T ) = exp

( ∞∑
s=1

N ′sT
s

s

)
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implies that of Z(Hf/Fq;T ). Indeed, we have

Z(Hf/Fq;T ) = Z ′(Hf/Fq;T ) · exp

( ∞∑
s=1

(Ns −N ′s)T s

s

)

let Xi = { (x1, . . . , xn) ∈ Hf | xi = 0 }. Then Xi is an affine hypersurface in An−1Fq . By the inclusion-

exclusion principle, we then have that

Ns −N ′s =

∣∣∣∣∣
n⋃
i=1

Xi(Fqs)

∣∣∣∣∣
=

n∑
i=1

|Xi(Fqs)| −
∑
i<j

|Xi(Fqs) ∩Xj(Fqs)|+
∑
i<j<k

|Xi(Fqs) ∩Xj(Fqs) ∩Xk(Fqs)|+ . . .

Note that Xi ∩Xj is an affine hypersurface in An−2Fq and the same pattern is true for the more numerous

intersections. Thus by the induction hypothesis,

exp

( ∞∑
s=1

(Ns −N ′s)T s

s

)
=

∏n
i=1 Z(Xi/Fq;T ) ·

∏
i<j<k Z((Xi ∩Xj ∩Xk)/Fq;T ) . . .∏

i<j Z((Xi ∩Xj)/Fq;T ) . . .

is p-adic meromorphic. Hence it suffices to show that Z ′(Hf/Fq;T ) is p-adic meromorphic.

To this end, fix an integer s ≥ 1 and let q = pr for some r ≥ 1. Let a ∈ Fqs and let τ = τs(a)

represent its Teichmüller representative in Cp. Recall that, given a pth root of unity ω, we have the

following character lifting

ω
TrFqs/Fp (a) = Θ(τ)Θ(τp) . . .Θ(τp

rs−1
)

By Lemma 4.5.2 we have the equality

∑
x0∈(Fqs )×

ω
TrFqs/Fp (x0u) =

 −1 if u ∈ (Fqs)×

qs − 1 if u = 0

Now, we may consider u = f(X1, . . . , Xn) where f is the defining polynomial of Hf . Then∑
x1,...,xn∈(Fqs )×

∑
x0∈Fqs

ω
TrFqs/Fp (x0f(x1,...,xn)) = qsN ′s

Hence removing the x0 = 0 term leaves us with∑
x0,x1,...,xn∈(Fqs )×

ω
TrFqs/Fp (x0f(x1,...,xn)) = qsN ′s − (qs − 1)n

We shall now pass to the lifting of the character to show that the zeta-function is p-adic meromorphic. To

this end, let F (X0, X1, . . . , Xn) ∈ Cp[X0, X1, . . . , Xn] represent the polynomial X0f(X1, . . . , Xn) with its

coefficients replaced by their Teichmüller representatives in Cp. Write F (X0, X1, . . . , Xn) =
∑N

i=1 aiX
wi .
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Then

qsN ′s = (qs − 1)n +
∑

x0,x1,...,xn∈(Fqs )×
ω
TrFqs/Fp (x0f(x1,...,xn))

= (qs − 1)n +
∑
x∈U

xq
s−1

=1

N∏
i=1

Θ(aix
wi)Θ(api x

pwi) . . .Θ(ap
rs−1

i xp
rs−1wi)

Letting

G(X0, . . . , Xn) =

N∏
i=1

Θ(aiX
wi)Θ(apiX

pwi) . . .Θ(ap
r−1

i Xpr−1wi)

we have

qsN ′s = (qs − 1)n +
∑
~x∈U

xq
s−1

=1

G(x)G(xq) . . . G(xq
s−1)

Since the ai are the Teichmüller representatives of elements of Fqs they are in D(1). Lemma 4.4.5 then

implies that Θ(ap
k

i X
pkw) are in R0 whence G ∈ R0. In particular, Dwork’s Trace Formula makes sense

for the particular power series G and we thus have

qsN ′s = (qs − 1)n + (qs − 1)n+1Tr(Ψs)

Dividing through by qs and using the binomial formula gives us

N ′s =
n∑
i=0

(−1)i
(
n

i

)
qs(n−i−1) +

n+1∑
i=0

(−1)i
(
n+ 1

i

)
qs(n−i)Tr(Ψs)

Using Proposition 4.3.6 we denote

∆(T ) = det(1−ΨT ) = expp

(
−
∞∑
s=1

Tr(Ψs)T s

s

)
Finally, we have that

Z ′(Hf/Fq;T ) = expp

( ∞∑
s=1

N ′sT
s

s

)

=
n∏
i=0

[
expp

( ∞∑
s=1

qs(n−i−i)T s

s

)](−1)i(ni)
·
n+1∏
i=0

[
expp

( ∞∑
s=1

qs(n−i)Tr(Ψs)T s

s

)](−1)i(n+1
i )

=

n∏
i=0

[
expp(− logp(1− qn−i−1T ))

](−1)i(ni) · n+1∏
i=0

∆(qn−iT )(−1)
i+1(n+1

i )

=

n∏
i=0

(1− qn−i−1T )(−1)
i+1(ni) ·

n+1∏
i=0

∆(qn−iT )(−1)
i+1(n+1

i )

Each term in this product expansion is p-adic meromorphic from which it follows that the zeta-function

itself is p-adic meromorphic.
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4.6 Finishing the proof

We will now apply Borel’s Theorem to the zeta-function. The following proposition is a slightly weaker

statement of a result proved in Dwork’s original paper, [Dwo60].

Theorem 4.6.1. Let ζ(T ) ∈ 1 + TZ[[T ]] be a power series. Suppose that ζ is holomorphic on a disk in

C and meromorphic on Cp. Then ζ(T ) is a rational function in Q(T ).

Proof. Let ζ(T ) = α(T )/β(T ) where α(T ) and β(T ) are p-adic entire functions. Since β(T ) is p-adic

entire, for all r > 0, it converges on the disk D(r) in Cp. By the p-adic Weierstrass Preparation Theorem,

we may write β(T ) = P (T )/β0(T ) for some function β0(T ) ∈ 1 + TCp[[T ]] which converges on D(r) and

a polynomial P (T ) ∈ 1 + TCp[T ]. Let F (T ) = α(T )β0(T ). Then F (T ) = P (T )ζ(T ) and is p-adically

convergent on D(r).

Now, write ζ(T ) =
∑∞

i=0 aiT
i ∈ 1 + TZ[[T ]], F (T ) =

∑∞
i=0 biT

i ∈ 1 + TCp[[T ]] and P (T ) =∑e
i=0 ciT

i ∈ 1 + Cp[T ]. Without loss of generality, we may assume that ζ(T ) converges on a disk

of radius R < 1 in C. Equating coefficients in F (T ) = P (T )ζ(T ) we have

bi+e = ai+e + c1ai+e−1 + · · ·+ ceai (4.3)

Now let As,m be the matrix given by (as+i+j)0≤i,j≤m and denote Ns,m = detAs,m. We first observe that

Ns,m is necessarily an integer. Letting m > 2e, we see that Equation 4.3 allows us to replace all but the

first e columns of As,m with the corresponding columns in (bs+i+j)0≤i,j≤m without changing Ns,m. Since

|ai|p ≤ 1, we have the following estimate for sufficiently large s

|Ns,m|p ≤
(

max
i≥s+e

|bi|p
)m+1−e

< r−s(m+1−e)

Now write r = 1/R2. We then have that

|Ns,m|p < Rs(m+2)

Furthermore, since ζ(T ) converges on the disk of radiusR in the complex plane, we have that |ai|∞ ≤ R−i.

Then

|Ns,m|∞ =

∣∣∣∣∣∣
∑

σ∈Sm+1

sgn(σ)

m+1∏
i=1

aσ(i),i

∣∣∣∣∣∣
∞

≤ (m+ 1)!

m+1∏
i=1

max
0≤i,j≤m

|as+i+j |∞

≤ (m+ 1)!R−(s+2m)(m+1)

Then

|Ns,m|∞|Ns,m|p ≤ (m+ 1)!R−(s+2m)(m+1)Rs(m+2) = (m+ 1)!Rs−2m(m+1)
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Since R < 1, passing to the limit s→∞ yields

|Ns,m|∞|Ns,m|p < 1

for s sufficiently large. But the only integer satisfying the above is 0 so we must have that Ns,m = 0 for

some m > 2e and for s sufficiently large. In light of Borel’s Theorem, ζ(T ) is thus a rational function.

This theorem immediately implies that the zeta-function of an affine hypersurface over Fq is rational.

Indeed, the zeta-function is holomorphic on the disc of radius 1/qn in C, is p-adic meromorphic and has

integer coefficients. Dwork’s Theorem is thus proved.

Dwork’s slightly more general version of Theorem 4.6.1 only requires that the power series be mero-

morphic on a disc of radius R in Cp and holomorphic on a disc of radius r in C where Rr > 1. This is

proven in the same way as the proof presented above with minor changes required.

In fact, Dwork further generalised this result. In particular, if K/Q is a rational number field, it

is possible to define a sort of p-adic absolute value on K attached to a prime ideal p / OK , say | · |p.

Completing K with respect to | · |p yields a finite extension of Qp. This is a generalisation of p-adic

completions to arbitrary number fields. Dwork then proves the following theorem:

Theorem 4.6.2. Let K be a number field and F (T ) =
∑∞

i=0 aiT
i ∈ K[[T ]] a power series. Then

F ∈ K(T ) if and only if there exists a finite set S of primes3 of K such that

1. For all p 6∈ S, |ai|p ≤ 1 for all i

2. For all p ∈ S, F (T ) is meromorphic on the disk of radius Rp where {Rp } is a set of positive real

numbers satisfying ∏
p∈S

Rp > 1

The interested reader is invited to read Dwork’s paper, [Dwo60] for a proof of this theorem. We end

this chapter by extending the reach of Dwork’s proof of the rationality of the zeta-function to so-called

affine varieties.

Definition 4.6.3. Let K be a field and f1, . . . , fm ∈ K[X1, . . . , Xn] a polynomial. We define the affine

variety defined by f1, . . . , fn in AnK to be

Hf1,...,fn = { (x1, . . . , xn) ∈ AnK | fi(x1, . . . , xn) = 0 ∀ 1 ≤ i ≤ n }

If Hf1,...,fm is an affine variety over Fq then we may define Ns = |Hf1,...,fm(Fqs)| and the zeta-function

for Hf1,...,fm in exactly the same way as we did for affine hypersurfaces.

Proposition 4.6.4. Let Hf1,...,fn be an affine variety over Fq. Then the zeta-function for this variety is

rational.
3here we include the possibility of the so-called prime at infinity, ∞. This corresponds to the absolute value | · |∞
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Proof. We shall prove the proposition by induction on the number of polynomials fi. If n = 1 then Hf1

is simply a hypersurface and its zeta-function is rational by Dwork’s Theorem. Suppose the proposition

holds for all 1 ≤ i ≤ n− 1. We have that

Hf1,...,fn−1 = Hf1 ∩ · · · ∩Hfn−1

By the inclusion-exclusion principle we have, for any s ≥ 1,∣∣∣∣∣
n⋃
i=1

Hfi(Fqs)

∣∣∣∣∣ =

n∑
i=1

|Hfi(Fqs)| −
∑
i<j

|Hfi(Fqs) ∩Hfj (Fqs)|

+
∑
i<j<k

|Hfi(Fqs) ∩Hfj (Fqs) ∩Hfk(Fqs)|

...

+ (−1)n−1|Hf1(Fqs) ∩ · · · ∩Hfn(Fqs)|

Note that ∪ni=1Hfi is simply the hypersurface Hf1...fn . We thus see that we can describe the number of

points of Hf1,...,fn in terms of the number of points of hypersurfaces and varieties of dimension strictly

less than n. By the induction hypothesis and Dwork’s Theorem, the zeta-function of Hf1,...,fn can be

expressed as products of rational zeta functions of such hypersurfaces and lower dimensional varieties.

Therefore, the zeta-function of Hf1,...,fn is itself rational.



Chapter 5

The Weil Conjectures

Dwork’s Theorem fits into a larger framework of now-proven results concerning the zeta-function of

varieties. They were introduced by André Weil in 1949 in his influential paper [Wei49]. In order to state

the conjectures in full generality, we shall generalise our idea of varieties to projective space.

Definition 5.1. Let K be a field. Define an equivalence relation ∼ on An+1
K \ { 0 } where (a1, . . . , an+1) ∼

(b1, . . . , bn+1) if and only if there exists λ ∈ K× such that ai = λbi for all 1 ≤ i ≤ n + 1. We define n-

dimensional projective space, denoted PnK , to be the set of all equivalence classes of this equivalence

relation.

Intuitively, we see that PnK is the set of all lines through the origin in An+1
K . AnK embeds in PnK by

the inclusion mapping (a1, . . . , an) 7→ [(1, a1, . . . , an)]. The image of AnK is clearly all of PnK except for

the equivalence classes of ordered pairs with zero x0 coordinates. We shall refer to such equivalence

classes as the points at infinity of PnK . It is easy to see that the set of all points at infinity of PnK are

‘isomorphic’ to Pn−1K . Indeed, there is a bijection between the equivalence classes of (0, x1, . . . , xn) in

PnK and the equivalence classes of (x1, . . . , xn) in Pn−1K . We can repeat this process to see that PnK is the

following disjoint union: PnK = AnK ∪ An−1K · · · ∪ A1
K ∪ (point at infinity)

Definition 5.2. Let K be a field and f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] a polynomial. The homogeneous

completion of f is the polynomial f(X0, . . . , Xn) = Xdeg f
0 f(X1/X0, . . . , Xn/X0).

The homogeneous completion of a polynomial is naturally a homogenous polynomial in the degree of

f . Now, if f(X0, X1, . . . , Xn) ∈ K[X0, X1, . . . , Xn] is a homogeneous polynomial and f(x0, x1, . . . , xn) =

0 then clearly f(λx0, λx1, . . . , λxn) = 0 for any λ ∈ K×. Hence it makes sense to consider the points

(equivalence classes) of PnK where f vanishes. This motivates the following definition:

Definition 5.3. Let K be a field and f1, . . . , fm ∈ K[X0, X1, . . . , Xn] a homogeneous polynomial. We

define the projective variety defined by the f i, denoted Hf1,...,fm
to be the set of points in PnK at

which each of the f i simultaneously vanish.

Example 5.4. Consider the projective hypersurface Hf over P1
Fq defined by the homogeneous polynomial

f(X0, X1) = X0. Then, using the fact that P1
Fq = A1

Fq ∪ (point at infinity), we have Ns = |Hf (Fqs)| =

qs + 1. We can then define the zeta-function for this hypersurface in exactly the same way as for affine

hypersurfaces:

Z(Hf/Fq;T ) = exp

( ∞∑
s=1

(qs + 1)T s

s

)
=

1

(1− T )(1− qT )
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Definition 5.5. Let K be a field and Hf1,...,fm
a projective variety defined by homogeneous polynomials

f1, . . . , fm ∈ K[X0, X1, . . . , Xn]. We say that Hf1,...,fm
is smooth if the partial derivatives of each f i

with respect to all indeterminates do not vanish simultaneously.

We can now state the Weil conjectures. Let H be a smooth projective variety defined over PnFq . Then

the zeta-function of H enjoys the following properties:

1. Rationality

Z(H/Fq;T ) =
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )

where P0(T ) = 1− T, P2n(T ) = 1− qnT and each Pi(T ) factors over C as

Pi(T ) =
∏
j

(1− αijT )

for some algebraic numbers αij .

2. Functional equation

Z(H/Fq; 1/(qnT )) = ±qnε/2T εZ(H/Fq;T )

where ε ∈ Z is the Euler characteristic of H.

3. Riemann Hypothesis - Each αij for 1 ≤ i ≤ 2n−1 in the expansion above satisfies |αij |∞ = qi/2.

In light of the above, we can see that Dwork’s proof of the rationality of zeta-function was quite

remarkable in that it was far more general than Weil conjectured. Indeed, Dwork’s proof was targeted at

affine hypersurfaces regardless of their smoothness. This result then implies the rationality for smooth

projective varieties. In addition to this, Weil originally hypothesised that the proof of the conjectures

would depend on a suitable so-called Weil cohomology theory1. However, Dwork’s proof relied solely

on p-adic analysis which certainly came as a surprise to his contemporaries. The functional equation

and rationality were proven together by Alexander Grothendieck in 1965 after the development of étale

cohomology. Pierre Deligne then built upon his efforts and proved the Riemann hypothesis component

of the conjectures in 1974.

The Weil conjectures found many uses in pure mathematics - especially in number theory. They are

also highly applicable in areas such as coding theory and cryptography. Despite Dwork’s proof being

superseded by Grothendieck’s, it is not only of historical interest. Indeed, Lauder and Wan [LW08]

recently used Dwork’s proof to construct a deterministic, polynomial time algorithm for computing the

zeta-function of varieties over finite fields of small characteristic.

1The details of this is outside the scope of this dissertation. We shall simply state that, given an algebraically closed
field k and a coefficient field K, then a Weil cohomology is a contravariant functor (satisfying certain properties) between
the category of smooth projective varieties defined over k and the category of graded K-algebras



Chapter 6

Conclusion

In retrospect, we have given a rigorous exposition of Dwork’s Theorem through the application of p-

adic analysis. In order to achieve this goal, we discussed the p-adic numbers Qp which are obtained

as a completion of the rational numbers with respect to a non-Archimedean absolute value | · |p. The

properties of the extensions of Qp were analysed and this allowed us to construct a unique multiplicative

homomorphism from finite fields to p-adic roots of unity, the Teichmüller lift τf . Furthermore, we sought

out a p-adic analogue to C, namely the complex p-adic numbers Cp. This field is algebraically closed and

complete with respect to the extended | · |p and it is the domain in which we proved Dwork’s Theorem.

After the construction of Cp, we turned our sights towards analysis in this field. We constructed

p-adic analogues of the exponential, logarithm and binomial expansions functions and discussed their

convergence and continuity. In particular, we used Dwork’s Lemma to construct a p-adic power series

which is at the heart of Dwork’s proof. In addition, we discussed Newton polygons and their role in

proving the p-adic analogue of the Weierstrass Preparation Theorem.

To prove Dwork’s Theorem, we first gave a necessary and sufficient condition for a power series with

coefficients in a field to be a rational function - Borel’s Theorem. In order to apply this result, we had to

show that the zeta-function of any affine hypersurface is necessarily p-adic meromorphic. To this end, we

discussed particular endomorphisms of Cp[[X1, . . . , Xn]] and proved Dwork’s Trace Formula. We then

applied this trace formula to a so-called lifting of a trace character to a function on Cp. This allowed us

to express the zeta-function in terms of alternating products of p-adic meromorphic functions. Dwork’s

Theorem then followed by proving a result found in Dwork’s original paper which combined the fact that

the zeta-function is holomorphic on a disc in C and p-adic meromorphic.

Thanks to Dwork’s Theorem, the original problem of determining the number of solutions to polyno-

mial equations over finite fields was solved. Since the zeta-function is rational, we are able to completely

determine the number of solutions in each extension of a finite field through a recursive sequence.

Dwork’s Theorem led us naturally on to the more general framework of the Weil conjectures. In

particular, we examined smooth projective varieties and discussed the properties that their zeta-functions

satisfy. These were rationality, a functional equation and an analogue of the Riemann Hypothesis.
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Notation Index

Symbol Meaning Page

AnK n-dimensional affine space over the field K 2

Fq Finite field of order q 2

K Algebraic closure of the field K 2

Z(H/K;T ) Zeta-function of the variety H defined over the field K in T 3

vp p-adic valuation for some prime p 5

Qp p-adic numbers for some prime p 6

Zp p-adic integers for some prime p 6

| · |∞ Euclidean absolute value 6

| · |p p-adic absolute value for some prime p 6

Gal(L/K) Galois group of the Galois extension L/K 10

NL/K(α) Algebraic norm of α from L to K 10

OK Ring of integers of the (p-adic) number field K 13

pK Unique maximal ideal of OK 13

µn(OK) Cyclic group of nth roots of unity in OK 16

τ(x) Teichmüller lift 16

Cp Complex p-adic numbers for some prime p 18

Dc(r) Open disc of radius r about c in Cp 20

Dc[r] Closed disc of radius r about c in Cp 20

logp(X) p-adic logarithm for some prime p 21

expp(X) p-adic exponential for some prime p 22

Ba,p(X) p-adic binomial expansion for some a ∈ Cp and prime p 23

U Set of all positive Z n-tuples 37

R0 Set of overconvergent power series 38

Ψ Dwork’s endomorphism of Cp[[X1, . . . , Xn]] 40

TrL/K(α) Algebraic trace of α from L to K 43

Θ Trace character lifting power series 45

PnK n-dimensional projective space over the field K 52
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